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Preface 

Current estimates and measurements predict that Internet traffic will continue to 
grow for many years to come. Driving this growth is the fact that the Internet has 
moved from a convenience to a mission-critical platform for conducting and 
succeeding in business. In addition, the provision of advanced broadband services 
to end users will continue to cultivate and prolong this growth in the future. As a 
result, there is a great demand for gigabit/terabit routers and switches (IP routers, 
ATM switches, Ethernet switches) that knit together the constituent networks of 
the global Internet, creating the illusion of a unified whole. These switches/routers 
must not only have an aggregate capacity of gigabits/terabits coupled with 
forwarding rates of billions of packets per second, but they must also deal with 
nontrivial issues such as scheduling support for differentiated services, a wide 
variety of interface types, scalability in terms of capacity and port density, and 
backward compatibility with a wide range of legacy packet formats and routing 
protocols. 

This edited book is a modest attempt to provide a comprehensive venue for 
advancing, analyzing, and debating the technologies required to address the above-
mentioned challenges, such as scaling the Internet and improving its capabilities. 
In particular, this book is a collection of chapters covering a wide range of aspects 
pertaining to the design, analysis, and evolution of high-performance Internet 
switches and routers. Some of the topics include switching fabrics, network 
processors, optical packet switching and advanced protocol design. The authors of 
these chapters are some of the leading researchers in the field. As a result, it is our 
hope that this book will be perceived as a valuable resource to as many readers as 
possible including university professors and students, researchers from industry, 
and consultancy companies. 
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1

Architectures of Internet Switches and Routers

Xin Li, Lotfi Mhamdi, Jing Liu, Konghong Pun, and Mounir Hamdi

The Hong-Kong University of Science & Technology. {lixin,lotfi,liujing,
konghong,hamdi}@cs.ust.hk

1.1 Introduction

Over the years, different architectures have been investigated for the design and
implementation of high-performance switches. Particular architectures were deter-
mined by a number of factors based on performance, flexibility and available tech-
nology. Design differences were mainly a variation in the queuing functions and
the switch core. The crossbar-based architecture is perhaps the dominant architec-
ture for today’s high-performance packet switches (IP routers, ATM switches, and
Ethernet switches) and owes its popularity to its scalability (when compared to the
shared-bus/shared-memory architectures), efficient operation (supports multiple I/O
transactions simultaneously) and simple hardware requirements. The architecture
includes the input-queued (IQ) crossbar fabric switch with its variations (Output-
queued, OQ, switch and Combined Input–Output-queued, CIOQ, switch) and the
internally buffered crossbar fabric switch (BCS).

IQ switches have gained much interest in both academia and industry because of
their low cost and scalability. The IQ switch has a low internal speedup because the
crossbar fabric has the same speed as that of the external line. Although the head-
of-line (HoL) blocking problem limits the achievable throughput of an IQ switch to
approximately 58.6% [1], the well-known virtual output queuing (VOQ) architec-
ture [2] was proposed and has improved switching performance by several orders
of magnitude, making IQ switches more desirable. However, the adoption of VOQ
has created a more serious problem, namely, the centralized scheduler. An arbitra-
tion algorithm examines the contents of all the input queues, and finds a conflict-
free match between inputs and outputs. The well-known optimal algorithms (i.e.
maximum-weight-matching or MWM) are too complex to implement at high speed
while the iterative algorithms, proposed as an alternative to the MWM algorithms,
fail to perform well under real world input traffic conditions.

As bufferless scheduling algorithms reach their practical limitations due to higher
port numbers and data rates, internally buffered crossbar switches (BCS) have started
to attract researchers because of the great potential they have in solving the com-
plexity and scalability issues faced by their bufferless predecessors. The increas-
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ing demand for terabit switches and routers means that future commercial packet
switches must be implemented with reduced scheduling complexity. The buffered
crossbar architecture can inherently implement distributed scheduling schemes and
has been considered a viable alternative to bufferless crossbar switches to improve
performance. The presence of internal buffers drastically improves the overall per-
formance of the switch as it offers two distinct advantages. First, the adoption of
internal buffers makes the scheduling totally distributed, dramatically reducing the
arbitration complexity. Second, and most importantly, these internal buffers reduce
(or avoid) output contention as they allow the inputs to make cell transfers concur-
rently to a single output. While there have been many architectures for the (BCS)
[3, 4, 5], our focus in this chapter is on BCS with VOQs (denoted by VOQ/BCS).

Despite the advantages that the VOQ/BCS architecture offers with regards to the
bufferless architecture, both are seen as unscalable and unable to keep up with In-
ternet growth in the foreseeable future. In fact, with progress in wavelength division
multiplexing (WDM) technology and optical fiber transmission, switches and routers
are becoming the bottleneck of the overall system. The increasing data rates on the
Internet are causing a scalability challenge for these crossbar-based architectures.
This scalability limitation can be attributed to the nature of crossbar-based fabric,
as a quadratic growth in the number of crosspoints puts a limit on chip area and/or
pin counts. As a result, there is an urgent need for truly scalable high-performance
packet switches that has motivated researchers and industry to look for alternative
switch fabrics. In particular, architectures such as the Clos-network switch architec-
ture and the optical-electronic switch architecture are starting to receive attention
because of their great potential in entirely solving the scalability issues.

The Clos-network switch architecture is the most popular example among nu-
merous examples of multi-stage switches in the communication world. It is mainly
a three-stage switch as shown in Figure 1.11. There are switching elements (SE)
at each stage which are connected. While the SEs can be any interconnect, typi-
cally they are crossbars of smaller sizes. The SE at each stage of the Clos network
is capable of transmitting a packet from an input port to any of the output ports.
Clos-network switches can be classified as buffered or bufferless, where the former
uses buffers to store packets in the second-stage SEs and the latter does not [6, 7].
Buffers in the second-stage SEs can help resolve contention among packets from
different first-stage modules but may cause a sequencing problem. While the Clos-
network switches have been proposed for a some time now, relatively little research
(especially compared to crossbars) has been conducted on making them scalable and
high-speed packet switches that can serve the needs of the Internet. One of the goals
of the current survey is to fill this gap.

Given the effort put by both industry and academia into the all-electronic switch/
router design, numerous studies show that all-electronic technology can no longer be
a viable solution for the design of scalable switches/routers (i.e. 256 × 256 and be-
yond). Alongside the scalability challenge, an electronic switch fabric becomes very
costly beyond a reasonable size (e.g. 128 × 128) and data rate (e.g. 10 Gb/s) due to
the ever-increasing power and chip count requirements for its implementation. More-
over, current WDM systems offer 32–64 wavelengths at 2.5–10Gb/s/wavelength,
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approaching a 1 Tb/s capacity, while research-level systems already exceed multi-
terabits in a single fiber. As a result, traffic growth will not be limited by fiber band-
width and/or optical components in the links. The total data rate of a single fiber is
increasing at a rate faster than the switching and routing equipment that terminates
and switches traffic at a carrier’s central office or point of presence (POP). In partic-
ular, switches and routers are becoming the bottlenecks of the overall system. While
there has been a lot of attention paid to all-optical switches as a solution to this bottle-
neck problem, most current POP switching equipment is electronic switches/routers
with optical I/O, and an all-optical solution in not expected to be viable in the fore-
seeable future. For this reason, research focus is shifting towards a solution that takes
advantage of the strengths of both electronics and optics, with the ultimate goal of
designing practical switches and routers that can scale with the Internet traffic growth
as well as keep up with the advances in WDM fiber transmission. Recently, attention
has been given to hybrid optical–electronic architectures where the linecards and
switch scheduler are designed using electronics and the switch fabric is designed
with optical technology. This switch architecture provides advantages such as scala-
bility, lower power consumption, and lower cost. However, a hybrid opto-electronic
packet switch/router presents a unique challenge: the reconfiguration time of an opti-
cal switch fabric is much longer than that of an electronic fabric, and the end-to-end
clock recovery in such a system adds to the reconfiguration overhead.

The goal of this chapter is to survey each of the above presented architectures,
and will be organized as follows. Section 1.2 presents the bufferless switching ar-
chitecture with its different types and scheduling schemes. Section 1.3 presents the
buffered crossbar switch architecture and discusses its scheduling processes and pro-
posed schemes. In Section 1.4, we present the Clos-network architecture and discuss
its variants and scheduling. Section 1.5 presents the optical switching trend and the
potential for building such cost-effective and highly scalable switches. Section 1.6
concludes the paper and suggests problems for further research.

1.2 Bufferless Crossbar Switches

1.2.1 Introduction to Switch Fabrics

Crossbar switch fabric is an active non-blocking switch fabric. In crossbar archi-
tecture, each line card is connected by a dedicated point-to-point link to the central
switch fabric. The inputs and outputs are connected at switching points, called cross-
points. It is the scheduler’s responsibility to set configurations for the crosspoint
matrix and for each configuration. One input/output can only be connected to one
output/input. The basic architecture of a crossbar switch is shown in Figure 1.1.

For bufferless crossbar switches, there is no buffer at the crosspoint. However,
buffers may be placed at the input side, output side, or both. Based on where the
buffers are placed, bufferless crossbar switches are categorized into input-queued
switches, output-queued switches, and combined input–output queued switches.
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Figure 1.1. Crossbar architecture

1.2.2 Output-queued Switches

Traditionally, switches and routers have been most often designed with an output
queuing strategy. This strategy has advantages in that guaranteed qualities-of-service
(QoS) can be provided for the system, which is able to control packet departure
times [8, 9]. An output-queued switch is attractive as it can always achieve 100%
throughput. However, since there are no queues at the inputs, all arriving cells must
be immediately delivered to their outputs. The necessary simultaneous delivery of all
arriving cells to the outputs becomes a disadvantage if the requirements for internal
interconnection bandwidth and memory bandwidth are too great. For a switch with

input ports, there can be up to cells, one from each input, arriving at any one
output simultaneously. Thus, in order to receive all the cells at one time the memory
needs a bandwidth of cell time write accesses. This requirement is referred to as
the internal speedup of the switch [10], so an output-queued switch has an internal
speedup of . The current demand for bandwidth is growing rapidly and as switch
sizes continue to increase, memory bandwidth will be insufficient for output queuing
to be practical.

1.2.3 Input-queued Switches

Memory bandwidth is not a problem with the input queuing strategy. In input-queued
switches, arriving cells are buffered on the input side and extracted to pass through
the switch fabric according to some arbitration algorithm. Contention within the
switch fabric and input/output interfaces is resolved by the arbitration algorithm
(each input can deliver at most one cell to the switch in one cell time and each output
can accept no more than one cell in one cell time).

Queuing Strategies

• Single FIFO and Head-of-line Blocking: It is relatively easy to implement sin-
gle FIFO (first-in-first-out) switches. A single FIFO queue is used at each input
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where only the first cell in each queue is eligible to be forwarded. Head-of-line
(HoL) blocking may occur where no cell can be transmitted from an input be-
cause of a contention of the first packet in the FIFO queue. Though the next cell
in the queue may be without contention, it cannot be transmitted as this would
disrupt the queue. Single FIFO switches suffering from HoL blocking result in
poor performance. It is well known that such a switch with Bernoulli I.I.D. ar-
rivals under uniform traffic can only achieve a maximum throughput of 58.6%
when the number of ports is large [1]. For periodic traffic, HoL blocking can lead
to even worse performance [11].

• Windowing Mechanism: This mechanism enables the scheduler of the switch to
look ahead (window size) cells in the queue at a time, relieving the HoL block-
ing problem and increasing performance by allowing cells behind the head of the
queue to be extracted. If the cell at the head of the queue cannot be transferred to
the intended output because of contention, the second cell is considered, and so
on, up to the th queue position. Note that when = 1, it is single FIFO queu-
ing. The performance of input-queued switches adopting this queue organization
grows with , however, this gain is limited as the complexity of the queuing
mechanism increases.

• Virtual Output Queuing: HoL blocking can be completely eliminated by using a
virtual output queuing [2] architecture at the input side. Rather than maintaining
a single FIFO queue for all cells, each input maintains a separate queue for each
output as shown in Figure 1.2. There are thus a total of 2 input queues, where
each separate queue is called a VOQ and operates according to the FIFO disci-
pline. The scheduler will select among the HoL cells of each VOQ and transmit
them. HoL blocking is eliminated as no cell can be held up by a cell ahead of it
that is destined for a different output. When virtual output queuing is employed,
the performance of the switch depends on the scheduling algorithm that decides
which cells should be transmitted during a cell time under the condition that only
one cell can be delivered to each input and only one cell can be accepted at each
output. With suitable scheduling algorithms, an input-queued switch using vir-
tual output queuing can increase the throughput from 58.6% to 100% for both
uniform and non-uniform traffic [12].

1.2.4 Scheduling Algorithms for VOQ Switches

Per one time slot, each input can send at most one cell and each output can receive
at most one cell. Scheduling algorithms are necessary for crossbar switches to find a
proper one-to-one match between inputs and outputs in order to configure the cross-
bar. A variety of scheduling algorithms are proposed for the VOQ architecture. This
section presents an overview of some popular and effective schemes.
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Figure 1.2. Virtual output queuing

Maximum Weight Matching Scheduling Algorithms

In maximum weight matching algorithms, a weight is attached with each request
from inputs to outputs. The weight could be the number of cells in the VOQ, the
waiting time of the HoL cell in the VOQ, etc.

• LQF: The longest queue first (LQF) algorithm [13] takes the number of cells in
each VOQ as weight. The algorithm picks a match such that the sum of served
queues’ lengths is maximized. LQF can lead to the starvation of some queues.
Because it does not consider the waiting time of cells, queues with short length
may be starved even though the wait time of their HoL cells surpasses the total
weight time experienced by cells in a longer queue.

• OCF: The oldest cell first (OCF) algorithm [13] uses the waiting times of HoL
cells as weights. The OCF algorithm selects a match such that the sum of all
served queues’ waiting time is maximized. Unlike the LQF algorithm, the OCF
algorithm does not starve any queue and unserved HoL cells will eventually be-
come old enough to be served.

• LPF: Both LQF and OCF have high computation complexity of ( 3 log )
and it is impractical to implement them in hardware. The longest port first (LPF)
algorithm [14] is designed to overcome the complexity problem of LQF and OCF
and can be implemented in hardware at high speed. The weight of the LPF al-
gorithm is the total number of cells queued at the input and output interfaces:

=
P

=1 +
P

=1 ( is the number of cells in ). This
sum is called port occupancy, which represents the workload or congestion that a
cell faces as it competes for transmission. It is proved in [14] that the maximum
weight match found by LPF is also a maximum size match. Thus, a modified
maximum size matching algorithm, which makes LPF less complex than LQF, is
used to implement LPF.

MWM scheduling algorithms achieve 100% throughput under any admissible
traffic. However, their good performance and stability come at the expense of high
computation complexity.
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Approximating Maximum Size Matching Scheduling Algorithms

Approximating maximum size matching algorithms are fast and simple to imple-
ment in hardware with today’s technologies. They provide 100% throughput under
uniform traffic and fairly good delay performance as well. However, they are not sta-
ble under non-uniform traffic. Most of the approximating maximum size matching
algorithms are iterative algorithms.

• PIM: The Parallel Iterative Matching (PIM) [15] algorithm attempts to approxi-
mate a maximum size matching algorithm by iteratively matching the inputs to
the outputs until it finds a maximum size match. Each iteration consists of three
steps:
Step 1. Request. Each unmatched input sends a request to every output for which
it has a queued cell.
Step 2. Grant. If an unmatched output receives any requests, it grants one by
randomly selecting from all requests.
Step 3. Accept. If an input receives more than one grant, it accepts one by random
selection.
The PIM algorithm faces some problems. First, randomness is difficult and ex-
pensive to implement at high speed. Each arbiter must make a random selection
among the members of a time-varying set. Second, when the switch is oversub-
scribed, PIM can lead to unfairness between connections. Finally, PIM does not
perform well for a single iteration: it limits the throughput to approximately 63%,
only slightly higher than a FIFO switch.

• Round-robin scheduling: All existing round-robin scheduling algorithms have
the same three steps as PIM. Instead of randomly matching cells, the input and
output arbiter adopts a round-robin scheme where the inputs and outputs take
turns. Round-robin scheduling overcomes two problems in PIM: complexity and
unfairness. Implemented as priority encoders, the round-robin arbiters are much
simpler and can perform faster than random arbiters. The rotating scheme makes
the algorithm assign bandwidth equally and more fairly among requests.

– iSLIP: One iteration of iSLIP [2] consists of three steps:
Step 1. Request. Each unmatched input sends a request to every output for
which it has a queued cell.
Step 2. Grant. If an output receives any requests, it chooses the one that ap-
pears next in a fixed, round-robin schedule starting from the highest priority
element. The output notifies each input whether or not its request was granted.
The pointer to the highest priority element of the round-robin schedule is in-
cremented (modulo ) to one location beyond the granted input if and only
if the grant is accepted in Step 3. If no request is received, the pointer stays
unchanged.
Step 3. Accept. If an input receives a grant, it accepts the one that appears
next in a fixed round-robin schedule starting from the highest priority ele-
ment. The pointer to the highest priority element of the round-robin schedule
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is incremented (modulo ) to one location beyond the accepted one. If no
grant is received, the pointer stays unchanged. iSLIP updates the grant point-
ers only when the grant is accepted. In this scheme, starvation is avoided.

– FIRM: FCFS in round-robin matching (FIRM) [16] achieves improved fair-
ness (as it approximates FCFS) and has tighter service guarantee than iSLIP.
The only difference between iSLIP and FIRM lies in Step 2. FIRM moves
the grant pointer regardless of whether the grant is accepted or not, i.e.:
Step 2. Grant. If an output receives any requests, it chooses the one that
appears next in a fixed, round-robin schedule starting from the highest pri-
ority element. The output notifies each input whether or not its request was
granted. The pointer to the highest priority element of the round-robin sched-
ule is incremented (modulo ) to one location beyond the granted input if
and only if the grant is accepted in Step 3. If the grant is not accepted, the
pointer is placed to the granted input. If no request is received, the pointer
stays unchanged.

The modification of the grant pointer results in enhanced fairness in terms of
FCFS service, i.e. FIRM approximates FCFS closer than iSLIP with the use of
the round-robin pointers. FIRM achieves this as it forces the scheduler to issue
the next grant to the unsuccessful request until the grant is accepted while iSLIP
may take the newly arrived request first.

Randomized Scheduling Algorithms

The motivation for proposing randomized algorithms is to overcome the complexity
of MWM algorithms and to achieve stability under any admissible traffic.

• TASS: TASS [17] is the basic randomized algorithm proposed by Tassiulus. The
steps for this algorithm are as follows:
(a) Let ( ) be the schedule used at time .
(b) At time + 1 choose a match ( + 1) uniformly at random from the set of
all ! possible matches.
(c) Let ( + 1) = max ( + 1) ( ( + 1) is the queue-lengths
matrix at time + 1.)
It was proven that if the probability of ( + 1) being equivalent to the max-
imum weight matching is lower bounded by some constant , the algorithm is
stable. Although TASS achieves stability under any admissible traffic, it does not
have good delay performance, especially under non-uniform traffic. Recently, a
group of randomized algorithms including APSARA, LAURA, and SERENA
were proposed [18]. The motivation behind these algorithms is to improve the
delay performance by exploiting some features of the switching problem while
maintaining stability.
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• APSARA: APSARA [18] selects a match for the current time slot based on three
inputs: the match of the last time slot ( ), neighbors of the match ( ), and a
randomly chosen match ( +1). A neighbor of a match , denoted as ( ( )),
is obtained by exchanging the input/output pair of two connections in the match.
The weight is then computed from these inputs and chosen as the maximum
match time at + 1. The neighbor is used here with the objective of searching the
space matches in parallel.

• LAURA: LAURA [18] differs from APSARA in that LAURA uses a non-
uniform random sampling which has the purpose of keeping heavy edges in the
matching procedure and a corresponding merging procedure for weight augmen-
tation. By merging the matches of the randomly chosen ( + 1) with the match
of last time slot ( ), a match with increased weight is obtained. Notice that when
compared with TASS, ‘merge’ is used instead of ‘max’ due to the performance
improvement obtained with the merging algorithms.

• SERENA: SERENA [18] makes some modifications to LAURA where it uses
the arrival information in the merging procedure. The arrival graph, ( + 1),
is one component in the merging procedure and is directly used when it is a
match. Otherwise, modification to ( + 1) is required in order to yield a match.
This information is used based on the observation that the accumulation of queue
lengths is due to arrival events, which also serve as a source of randomness.

Performance Comparison among Algorithms

MWM algorithms perform very well in terms of both delay and stability. However,
the computation complexity required to implement them is generally too high to be
practical. The more practical approximating MSM algorithms perform well under
uniform traffic, but are not stable under non-uniform traffic. Randomized algorithms
are linear in complexity and provide the benefit of being stable under any admissible
traffic as well. However, the delay encountered is higher than that of approximating
MSM algorithms, as randomized algorithms have been designed with objectives of
stability rather than small average delay. Figure 1.3 shows the average delay under
uniform traffic for these typical algorithms. Figure 1.4 compares the average delay
of the same algorithms under diagonal traffic.

1.2.5 Combined Input–Output-queued Switches

VOQs and an increase in the internal speedup of a switch are used to solve the HoL
blocking problem. If the switch fabric has an internal speedup, i.e. a few times faster
than the line rate, buffers are required at both input and output sides. This is a com-
bined input–output queued (CIOQ) switch, which can emulate an OQ switch with
a small speedup. There are two emulation schemes: emulating an OQ switch on
throughput and emulating both throughput and cell delivery order.
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• Exact Emulation of an OQ Switch

Consider an OQ switch whose output buffers are FIFO. A CIOQ switch is said
to behave identically to an OQ switch if, under identical inputs, the departure
time of every cell from both switches is identical. This is also called the exact
emulation of the OQ switch.
It was first formulated by Prabhakar and Mckeown in [10] that a CIOQ switch
with a speedup of 4 can behave identically to a FIFO-OQ switch. This result holds
for switches with an arbitrary number of ports and for any traffic arrival pattern.
Their proof is based on the scheduling algorithm called Most Urgent Cell First
(MUCFA). The urgency value of a cell used in the MUCFA is defined as the
distance it clones from the head of the output buffer in the shadow switch. The
cells in any output buffer of the CIOQ switch are arranged in increasing order
of urgencies, with the most urgent cell at the head. Once a cell is forwarded to
its output in the CIOQ switch, its position is determined by its urgency. MUCFA
works as follows:
(1) At the beginning of each phase, each output obtains its most urgent cells from
the inputs.
(2) If more than one output requests an input, then the input will grant the output
whose cell has the smallest urgency number. Ties are broken by the smallest port
number.
(3) Each unmatched output obtains its next most urgent cell from another un-
matched input. Then go to step 2.
(4) When the matching of inputs and outputs is no longer possible, cells are
transferred and MUCFA goes to step 1 for the next phase.
The way in which MUCFA matches inputs and outputs is a variation of the sta-
ble marriage problem, which was first introduced by Gale and Shapley and can
be solved by a well-known algorithm called GSA. GSA can find a stable match
in 2 iterations [19]. MUCFA is extended to achieve the exact emulation by a
speedup of only 2 by a new algorithm called Joined Preferred Matching (JPM)
algorithm [20]. Similarly, Critical Cell First (CCF) has been proposed to emulate
an OQ switch with speedup 2 and with different output scheduling disciplines
[10]. There are two main disadvantages for those GSA-based algorithms men-
tioned above. First, the stable match in each phase can take as many as 2 it-
erations. Second, the algorithms have a high information complexity: they need
to maintain a large amount information which is not locally available. The DTC
strategy is proposed to reduce the number of iterations and the GBVOQ algo-
rithm is proposed to avoid using global information [10]. However, these two
solutions cannot be combined.

• Work-conserving

A switch is work-conserving if and only if each output is active at the end of
the time slot , where there are cells (either at input or at the output buffers)
at the beginning of that time slot. A work-conserving switch provides the same
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throughput performance as an OQ switch. The Lowest Occupancy Output First
Algorithm (LOOFA) has been proposed in [21] with the work-conserving prop-
erty in a CIOQ switch with a speedup of 2. An integer variable, occupancy, is
associated with each output queue in LOOFA. The occupancy of an input at
any time is simply the number of cells currently residing in output ’s buffer.
(1) Each unmatched input selects the non-empty VOQ going to an unmatched
output with the lowest occupancy and sends a request to that output.
(2) The output, upon receiving requests from multiple inputs, selects one and
sends a grant to that input.
(3) The switch returns to step 1 until no more matches can be made.
This algorithm essentially gives priority to output channels with low occupancy,
thereby attempting to simultaneously maintain work conservation across all out-
put channels. The work conserving feature of the switch is independent of the
selection algorithm used at the outputs.

1.3 Buffered Crossbar Switches

1.3.1 Buffered Crossbar Switches Overview

For many years, buffered crossbar switches have been considered a viable solution to
improve the switching throughput as an alternative to bufferless crossbar switches.
Buffered crossbar switches have been studied for at least two decades [4, 22, 23].
In an architecture called pure buffered crossbar, as shown in Figure 1.5, buffering
occurs exclusively at the crosspoints and is utilized to minimize cell loss. The number
of ports is limited by the memory amount that can be implemented in a module chip.
An example of this architecture was proposed in [4], where a 2 × 2 switch module
with a crosspoint memory of 16 Kbytes each was implemented.

Unfortunately, at that time, it was not possible to embed enough buffering on-
chip and therefore this architecture was unable to comply with the required cell
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loss rate. In order to overcome the excessive on-chip memory requirement, buffered
crossbar switches with input queues were proposed [23, 24]. While there have been
many studies analyzing the performance of input FIFO based buffered crossbar
switches, a recent result proved that a buffered crossbar employing FIFO queues
as its input queuing can achieve 100% throughput under uniform traffic arrivals [25].
As with traditional IQ switches, buffered crossbar switches with input VOQs were
researched in order to improve the switching performance.

Buffered crossbar switches with input VOQs (denoted VOQ/BCS) have recently
received a lot of interest from both research and industrial communities. Numer-
ous research groups have studied the VOQ/BCS architecture [3, 5, 26]. A represen-
tative example from industry that implemented VOQ/BCS is [27]. The first fixed-
size-cell VOQ/BCS architecture was introduced in [3] and was shown to outperform
conventional IQ switching performance. A Combined Input-One-cell-Crosspoint
Buffered Switch (CIXB-1) with VOQs at the input employing a round-robin arbitra-
tion scheme was proposed in [28], and was shown to achieve 100% throughput under
uniform traffic. The same architecture was extended in [29] to support more than a
one cell internally buffered crossbar with input VOQs along with round-robin arbi-
tration. This architecture shows improvement over that of [28] by achieving 100%
under uniform traffic as well as non-uniform traffic. VOQ/BCS architecture oper-
ating on variable length packets has been studied and was introduced in [30, 31].
When directly operating on variable length packets, a VOQ/BCS no longer requires
a segmentation and reassembly (SAR) circuitry and no speedup to compensate for it
[31].

VOQ/BCS have also been studied in an attempt to emulate OQ switching. Very
interesting results have been proposed showing that a VOQ/IBC, running twice as
fast as the line rate, can emulate a FIFO OQ switch [32]. Other results [33], proved
that a VOQ/IBC with a speedup of two can emulate a broad class of algorithms (i.e.,
FCFS, Strict Priority, Early Deadline First) operating on an OQ switch. A more re-
cent and extended result [26] showed that a VOQ/IBC switch with two times speedup
can provide 100% throughput, rate and delay guarantees.

As will be shown, the VOQ/BCS has many advantages that alleviate the schedul-
ing task and make it simple. The increasing demand for terabit switches and routers
means that future commercial packet switches must be implemented with reduced
scheduling complexity, and buffered crossbar architecture, inherently, can implement
distributed scheduling schemes. In fact, buffered crossbar switches have been consid-
ered as a viable alternative to bufferless crossbar switches to improve the switching
performance.

1.3.2 The VOQ/BCS Architecture

In this section, we present the buffered crossbar architecture (VOQ/BCS) using the
notation and terminology that will be referred to in the rest of this chapter. We present
the switch model and its components such as inputs, internally buffered crossbar
fabric, and outputs. Then, we present the three steps that a scheduling cycle consists
of: input scheduling, output scheduling, and delivery notification.
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Figure 1.6. The VOQ/BCS architecture

Architecture and Terminology

As shown in Figure 1.6, an × VOQ/BCS switch architecture consists of
input cards, with each maintaining VOQs, one for each output. The buffered
crossbar fabric component is the main characteristic of the VOQ/BCS that differen-
tiates it from the conventional IQ/VOQ architecture, where small buffers are added
per crosspoint. Fixed size packets, or cells, are considered. Upon their arrival at the
switch, variable length packets are segmented into cells for internal processing and
re-assembled before they leave the switch. A processing cycle has a fixed length,
called cell or time slot. The architecture can be divided into three major parts and
described as follows:

• Input Cards: There are input cards; each one maintains logically separated
VOQs. When a packet destined to output , 0 1, arrives at the input
card , 0 1, it is held in . A is said to be eligible for
being scheduled in the input scheduling process if it is not empty and the internal
buffer is empty.

• Buffered Fabric: The internal fabric consists of 2 buffered crosspoints (XP).
Each crosspoint has a one-cell buffer. A crosspoint , holds cells coming
from input and going to output .

is the set of the internal buffers for all outputs ( 0+· · ·+ ( 1)).
is the set of the internal buffers for all inputs ( 0 + · · ·+ ( 1) ).

• Flow Control: Between each two time slots a flow control mechanism is per-
formed for information exchange between the crosspoints and the input cards.
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Figure 1.7. Scheduling cycle for the VOQ/BCS architecture

Each crosspoint tells its corresponding input card whether or not it is
ready to receive a cell during the next time slot.

It is of note that the arbiters at the inputs and the outputs are totally distributed.
There are as many arbiters as input ports, and the same applies for the outputs. The
arbitration made by any arbiter does not depend on the other arbiter’s decisions. At
every input port, all an arbiter needs to maintain is the state of the VOQs belonging
to its port and the internal buffer’s state corresponding to these VOQs.
However, for each output arbiter, it is even simpler. All an output arbiter needs
to maintain is the occupancy of its corresponding internal buffers .

Scheduling Process

With the structure described above and the corresponding notation, a scheduling cy-
cle consists of three steps:

1. Input scheduling: each input selects one cell, in a predefined manner, from the
HoL of an eligible VOQ.

2. Output scheduling: each output selects one cell, in a predefined manner, from
all the internally buffered cells in the crossbar to be delivered to the output port.

3. Delivery notification: for each delivered cell, inform the corresponding input of
the internal buffer status; that is, change the status of the corresponding VOQ to
be eligible.

Figure 7(a) illustrates a scheduling cycle consisting of the three above-mentioned
phases. The input scheduling is performed first, followed by the output scheduling,
and finally the delivery notifying. It is of note that for fast implementation purposes,
the output scheduling and the delivery notifying steps can be overlapped, as shown
in Figure 7(b).

Features of the VOQ/BCS Architecture

This section presents the features that the VOQ/BCS offers. We will present these
characteristics in terms of comparison with the input queued and the shared memory
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Figure 1.8. Architecture comparison of bufferless and buffered crossbar

architecture. Compared to the existing architectures, the VOQ/BCS architecture has
substantial advantages. They can be summarized as follows:

• Better performance: In the IQ/VOQ architecture, a scheduling algorithm makes
a match between inputs and outputs. An input can select an output provided that
this output is not occupied by other inputs. This matching mechanism is usually
done through the request–grant–accept phases. As was shown in [34], the deci-
sion time spent by the grant and the accept arbiters takes approximately 75% of
the whole iteration time. This is due to high information exchange between the
input and output schedulers, which enforces a high dependency between them,
hence making their design complex and centralized. While in the VOQ/BCS ar-
chitecture, if an output is not ready to receive the cell, the input can still transmit
it to an internal buffer provided the internal buffer is empty. In other words, the
choices of inputs and the choices of outputs needn’t be synchronous. This can
entirely resolve the problem of output contention, since an input can send to
more than one output (via the internal buffer) and likewise, more than one out-
put can receive cells coming from the same input. Figure 8(b) shows an example
of output contention resolution. Adopting the VOQ/BCS architecture, the input
schedulers and the output schedulers are totally distributed. There is no informa-
tion exchange among them at all. This in turn, reduces the queuing delay and
increases the throughput, hence improving dramatically the overall performance
of the switch.
The example shows a 2×2 IQ switch, Figure 8(a), and a buffered crossbar switch,
Figure 8(b). In the first case, Figure 8(a), the two HoL cells (A and C) have
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Figure 1.9. Delay performance under Bernoulli IID uniform traffic

the same destination output, and one of them can be forwarded because of the
output contention. However, in Figure 8(b), the same input HoL cells A and C can
be transmitted, simultaneously, to the internal buffers, since only 1 2 is full.
Therefore the output contention problem does not occur at all for the buffered
crossbar case, so long as the internal buffer is free.
To show the far better performance a VOQ/BCS exhibits when compared to a
bufferless architecture, we plot the performance study of [28]. A 32×32 buffered
crossbar switch, using a simple round-robin arbitration scheme, was simulated
under Bernoulli IID uniform traffic and compared to that of a bufferless architec-
ture using iSLIP with one and four iterations, as in Figure 1.9.

• Higher speed and simpler implementation: Many scheduling algorithms for
the IQ/VOQ architecture are iterative (e.g. iSLIP, FIRM). However, the perfor-
mance of a single iteration is often not good enough. For iSLIP, usually four
iterations are employed. These additional iterations result in additional complex-
ity. For this architecture, we just run the above three steps. Input scheduling and
output scheduling can be totally independent, reducing largely their arbitration
complexity, which is linear on the input ports number .

• Lower hardware requirement: With shared memory, a speedup of is re-
quired to transfer all the incoming cells simultaneously to their outgoing ports.
However, for the VOQ/BCS architecture, each internal buffer is separated from
one another. An internal buffer will be accessed at most two times: once by an
input and once by an output.
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However, for a large number of inputs/outputs, the number of internal buffers
becomes huge (since it equals 2). Even though VLSI density increases make it
possible to embed enough memory on chip, it can still be quite difficult to put so
much memory on a crossbar. One way to make the implementation easier is by mov-
ing the internal buffers out of the crossbar and putting them at the input side of the
chip and adding two multiplexers. The first multiplexer at each input chooses one
among the N VOQs and sends the HoL packet to the internal buffers, and the second
multiplexer chooses one internal buffer according to the packet’s destination output
in which to put the received packet. Another implementation variant is putting the
internal buffers at the output side instead of the input. The multiplexer at an output
chooses one internal buffer to receive a packet and then sends it out. It is quite clear
that the two variants are equivalent to the original architecture. We believe that these
two alternative layouts are less complicated and more scalable than the conventional
one.

Scheduling Cells in the VOQ/BCS Architecture

As bufferless scheduling algorithms reached their practical limitations due to higher
port numbers and data rates, buffered crossbars received increased interest because
they have the potential to solve the complexity and scalability issues faced by their
bufferless predecessors. The increasing need for terabit switches and routers means
that future commercial packet switches must be implemented with reduced schedul-
ing complexity, and buffered crossbar architectures, inherently, can implement dis-
tributed scheduling schemes.

In the past few years, many scheduling schemes have been proposed for the
VOQ/BCS architecture. The first, [3], used input and output arbitration schemes
based on the Oldest Cell First. The second scheme presented was based on round-
robin arbitration in both input and output scheduling [28]. While these two schemes
were proven to achieve 100% throughput under uniform traffic, they performed
rather poorly under non-uniform traffic patterns. To overcome this, a scheme based
on Longest Queue First (LQF) input scheduling followed by a round-robin arbitra-
tion scheme in the output side was proposed and demonstrated 100% throughput
under uniform traffic patterns.

It is of note that the algorithms presented above were compared with buffer-
less schemes and were demonstrated, as expected, to have much better performance.
However, as mentioned earlier, the VOQ/BCS has key advantages that ensure the
scheduling algorithm is simple and efficient at the same time. So far, most existing
algorithms (OCF, RR, and LQF) are just simple mappings of previously proposed
algorithms for bufferless crossbar switches into the new VOQ/BCS architecture.

The presence of internal buffers significantly improves the overall performance
of the switch due to the advantages it offers. A scheme that takes full advantage
of the internal buffers was recently presented in [35]. This scheme was, in fact, an
approximation of the First Come First Served (FCFS) policy. It was based on the
Currently Arrival First (CAF) cell in the input scheduling followed by a priority
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Figure 1.10. Delay performance under bursty uniform traffic, l =100

scheme called Priority ReMoVal (PRMV). A scheme that exclusively used the inter-
nal buffers was also proposed [36]. This scheme is called the Most Critical internal
Buffer First (MCBF), and is based on the Shortest internal Buffer First (SBF) at the
input scheduling and on the Longest internal Buffer First (LBF) at the output side.
The authors addressed the important role that the internal buffer element plays in the
scheduling process due to its shared nature. While being a stateless scheme, MCBF
outperforms weighted scheduling schemes such as LQF and OCF. Figure 1.10 shows
the delay performance of MCBF, LQF-RR and OCF-OCF under uniform burst traffic
with burst length equal to 100.

1.4 Multi-stage Switching

1.4.1 Architecture Choice

Clos-network switch architectures can be categorized into two types. The first type
has buffers in the second stage, such as the WUGS architecture in [6]. The function
of the buffers is to resolve contention among cells from different first-stage modules.
However, cells may be mis-sequenced at the output ports, requiring a re-sequence
function, which is difficult to implement when the port speed increases. The sec-
ond type of architecture has no buffers in the second stage and uses shared memory
modules in the first and last stages to aggregate cells. The ATLANTA switch with
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its Memory/Space/Memory (MSM) architecture is a commercially successful exam-
ple [7]. This architecture is more promising as no mis-sequence problem exists. We
describe several dispatching algorithms for the MSM architecture, including con-
current dispatching (CD), concurrent round-robin dispatching (CRRD), concurrent
master–slave round-robin dispatching (CMSD), and concurrent static round-robin
dispatching (SRRD).

However, one disadvantage of the MSM architecture is that the input and out-
put stages are both composed of shared-memory modules, introducing a mem-
ory speedup problem. Although the speedup is smaller than that in output-queued
switches, it definitely hinders the switch’s ability to scale up to very large port num-
bers.

The memory speedup problem was solved by the bufferless Clos-network archi-
tecture proposed in [37]. This architecture contains only crossbar switching elements
in all stages. All cells are stored in the input port cards, as done with the virtual out-
put queuing structure in single-stage crossbar switches. Since the switching elements
are fully distributed by smaller modules, this raises the challenge of how to design
the scheduling algorithm in a fully distributed way. We then describe the Distro dis-
patching algorithm for the bufferless Clos-network architecture.

1.4.2 The MSM Clos-network Architecture

Switch Model

The switch architecture used in this paper is based on [37] and is shown in Figure
1.11. The input and output stages are both composed of shared-memory modules,
each with port interfaces. They are fully interconnected through a central stage
that consists of bufferless crossbars of size × . In the switch, there are input
modules (IM), central modules (CM), and output modules (OM).

An OM( ) has buffered output ports, OP( , ). Each output port buffer can
receive at most cells from central modules and send at most one cell to the
output line in one time slot.

An IM( ) has virtual output queues, VOQ( ), for storing cells that go
from IM( ) to OP( ) at OM( ). Each virtual output queue can receive at most
cells from input ports and send one cell to the central module. We use VOQ Group
( ) to represent all VOQs storing cells from IM( ) to OM( ).

An IM( ) has output links, LI( ), connecting to each CM( ). An CM( ) has
output links, LC( ), connecting to each OM( ).

Concurrent Dispatching (CD)

The distributed architecture implies the presence of multiple contention points in the
switch. The ATLANTA switch proposed the CD algorithm with highly distributed
nature [7, 38]. It works as follows.

In each time slot, each IM randomly selects up to VOQs and randomly sends
the requests to CMs. If there is more than one request for the same output link in
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Figure 1.11. The MSM Clos-Network model

a CM, it grants one request randomly. Finally, the granted VOQs send to the corre-
sponding OP in the next time slot.

However, the CD algorithm cannot achieve a high throughput unless the internal
bandwidth is expanded. The original CD algorithm applies a backpressure mecha-
nism in the dispatching process. We describe only its basic concept and character-
istic in this paper. We also assume that the buffer size in the IMs and OMs is large
enough to avoid cell loss. Hence we can focus the discussion on the properties of the
dispatching algorithms.

Concurrent Round-robin Dispatching (CRRD)

In crossbar switches, round-robin arbitration has been developed to overcome the
throughput limitation of the PIM algorithm. Similarly, the CRRD algorithm has been
proposed in [39] to overcome the throughput limitation of the CD algorithm by us-
ing round-robin arbiters. It is based on the request-grant-accept (RGA) handshaking
scheme, just as in the iSLIP algorithm. Since contention occurs in both output links
of the IMs and CMs, two phases must be employed to resolve the contentions. In
Phase 1, the algorithm employs iterative matching between VOQs and output links
in each IM. Phase 2 then performs contention control for the output links in the CMs.
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Phase 1: Iteractively Matching within IM:

• Step 1 Request: Each unmatched, non-empty VOQ( ) sends a request to
every output link LI( ).

• Step 2 Grant: Each output link LI( ) selects one request with the round-robin
arbiter and sends the grant to the selected VOQ.

• Step 3 Accept: Each VOQ V( ) selects one grant with the round-robin arbiter
and sends an acceptance notice to the selected output link LI( ).

Phase 2: Matching between IM and CM:

• Step 1 Request: Each IM output link LI( ), which was accepted by VOQ( )
in Phase 1, sends the request to the CM output link LC( ).

• Step 2 Grant: Each CM output link selects one request with the round-robin
arbiter. It then sends the grant to the selected IM.

• Step 3 Accept: If the IM receives the grant from the CM, it sends the head cell
from the matched VOQs in the next time slot.

Note that CRRD uses three sets of round-robin arbiters to resolve the contentions
in IMs and CMs. As with iSLIP, the round-robin pointer in the arbiters is updated
to one position after the selected position if and only if the match within the IM is
achieved in Phase 1 and the request is granted by the CM in Phase 2. The desyn-
chronization effect of the round-robin pointers in CRRD works exactly as in iSLIP.
As a result, CRRD provides 100% throughput under uniform traffic and burst traffic
independent of the number of iterations in Phase 1.

Concurrent Master/Slave Round-robin Dispatching (CMSD)

The CMSD is an improved version of the CRRD. It employs two sets of arbiters in
the IM, a master and a slave. They operate concurrently in a hierarchal round-robin
manner. The CMSD differs from the CRRD only in the iterative matching process in
Phase 1.

Phase 1: Iteractively Matching within IM:

• Step 1 Request: Each unmatched, non-empty VOQ( ) sends a request to the
th slave arbiters in every output link arbiter LI( ). At same time, each VOQ

Group ( ) that has at least one unmatched, non-empty VOQ sends a request to
the master arbiter in every output link LI( ).

• Step 2 Grant: Each slave arbiter and master arbiter simultaneously selects the
request in a round-robin fashion. At same time, each master arbiter selects one
VOQ Group’s request in a round-robin fashion. Finally, LI( ) sends the grant
to VOQ( ) if and only if has been selected by the master arbiter and has
been selected the th slave arbiter.

• Step 3 Accept: Each VOQ( ) selects one grant in a round-robin fashion and
sends an acceptance notice to the selected output link LI( ).



www.manaraa.com

Architectures of Internet Switches and Routers 23

CMSD provides enhanced scalability while preserving the advantages of CRRD.
In CRRD, each arbiter in LI( ) should make the decision among requests. In
CMSD, master arbiters need only consider requests and slave arbiters requests.
Since all arbiters can operate simultaneously, this will considerably reduce the arbi-
tration time.

Concurrent Static Round-robin Dispatching (SRRD)

The Static Round-robin (SRR) scheme has been demonstrated to give very good de-
lay performance in crossbar switches. The key idea is to desynchronize the pointers
in the round-robin arbiters in a static way and to use a rotating-search technique to
improve the performance under non-uniform traffic. Intuitively, we can apply the
SRR technique into dispatching processes in the Clos-network switching system.
The Static Round-robin Dispatching (SRRD) scheme was proposed in [40].

SRRD is exactly the same as CMSD except in its method for updating the round-
robin pointers. The novelty of our SRRD scheme is the systematic initialization and
intelligent updating of the pointers. All pointers are artificially set to be desynchro-
nized to efficiently resolve the contentions in each time slot, and it is guaranteed that
no VOQ will be starved in every time slots.

Performance Evaluation

We compare the delay performance of the dispatching algorithms in the MSM archi-
tecture and in the single-stage crossbar switch architecture under uniform traffic. We
use the Clos-network setting = = = 8, which corresponds to a port size of
= 64 in the crossbar switch.
As shown in Figure 1.12, the average delay of the algorithms in the MSM ar-

chitecture is larger than those in the crossbar switch when load is below 0.5. This
is because most of the dispatching algorithms in the crossbar switch perform fairly
efficiently under low traffic load. The MSM architecture introduces more contention
points in the distributed modules, however, the performance of the architecture is
improved significantly in the heavy load region, as shared memory modules are ef-
fectively used.

The randomness-base algorithms, PIM and CD, could only achieve about 60%
throughput. All remaining round-robin algorithms can achieve 100% throughput un-
der uniform traffic. SRRD has the lowest average delay and is much closer to the
performance of an output-queued switch. This result shows the significant effect of
the SRR technique in the MSM architecture.

1.4.3 The Bufferless Clos-network Architecture

Switch Model

One disadvantage of the MSM architecture is that the input and output stages are
both composed of shared-memory modules. This results in a memory speedup of
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Figure 1.12. Delay comparison of crossbar and MSM

in each IM and in each OM. In output-queued switches, the memory speedup is
= × . Although the speedup of MSM is smaller than that in output-queued

switches, it definitely hinders a switch’s ability to scale up to very large port numbers.
In [37], a bufferless Clos-network switching architecture has been proposed.

As depicted in Figure 1.13, the bufferless Clos-network architecture is slightly
modified from the MSM architecture by replacing all shared memory modules by
crossbars. All cells are stored in the input port cards, the same as the virtual output
queuing structure in single-stage crossbar switches.

An IP( ) has virtual output queues, VOQ( ), storing cells that go
from IP( ) to OP( ) at OM( ). Each virtual output queue can receive at most
one cell and send at most one cell. A VOQ Group ( ) comprises all VOQs from
IP( ) to OM( ). In this paper, corresponds to an IM, to a specific input port of
an IM, corresponds to an OM, and to a specific output port of an OM.

Distro Dispatching Algorithm

Since contention points exist in all output links of the IPs, IMs, CMs and OMs,
scheduling in the bufferless architecture is more challenging than in the MSM archi-
tecture. The Distributed Static Round-robin (Distro) dispatching algorithm has been
proposed in [37] to dispatching cells in the new architecture. The Distro algorithm is
a natural extension from algorithms in the MSM architecture.

The additional two phases are included in Distro because elimination of shared
memory modules in the first and third stage introduces two more contention points.
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Figure 1.13. The bufferless Clos-network model

Note that the algorithms for the MSM architecture are based on the request-grant-
accept (RGA) handshaking scheme. This approach is difficult to implement when too
many contention points exist, and therefore the Distro algorithm adopts the request-
grant (RG) scheme as proposed in the DRRM algorithm. Similar to SRRD, the Dis-
tro algorithm systematically initializes and intelligently updates the pointers. As a
result, all pointers are artificially set to be desynchronized to efficiently resolve the
contentions in each time slot, and it is guaranteed that no VOQ will be starved in
every time slots.

Each IP( ) is associated with Arbiter_ ( ), VOQ Group in IP( ) with
Arbiter_ ( ), LI( ) with Arbiter_ ( ), LC( ) with Arbiter_ ( ), and
OP( ) with Arbiter_ ( ). All arbiters are making decisions in a round-robin
fashion. Round-robin pointers of the highest priority are desynchronized at the start
and will be updated systematically to keep the desynchronization in each time slot.
The Distro algorithm works as follows:

• Phase 1 Request selection in each IP(i,g): Each Arbiter_ ( ) selects an non-
empty VOQ Group ( ). At the same time, each Arbiter_ ( ) selects a
non-empty VOQ( ) within VOQ Group ( ). Then each IP( ) sends
the request [ ] to its output link.

• Phase 2 Grant from LI(i,r): Each LI( ) systematically chooses the request
[ ] from IP( ) and sends the request to LC( ).

• Phase 3 Grant from LC(r,j): If LC( ) receives one or more non-empty re-
quests from LIs, it chooses the request [ ] in LI( ) with Arbiter_ ( )
and sends the request to OP( ).

• Phase 4 Grant from OP(j,h): If OP( ) receives one or more non-empty re-
quests from LCs, it chooses the request [ ] in LC( ) with Arbiter_ ( ).
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Figure 1.14. Delay comparison with crossbar and multi-stage scheduling algorithms

Finally, OP( ) notifies the IP( ) via the granted path, and the VOQ ( )
will send to OP( ) in the next time slot.

As mentioned before, the bufferless Clos-network architecture is very scalable
for port size. There are actually many flexibilities in the configurations. We can either
scale up the port size by increasing the number of ports per input/output module,
or increasing the number of central modules . Note that must be larger than or
equal to in order to achieve the non-blocking property in Clos networks.

Performance Evaluation

We compare the delay performance of our Distro algorithm with other related algo-
rithms in Figure 1.14. It is clear that Distro achieves 100% throughput under uniform
traffic. When load is less than 0.65, the Distro algorithm is worse than iSLIP on a
reasonable scale. This is due to an increased number of contention points in the
Clos-network switches. However, as the load increases, the desynchronization effect
of Distro improves the delay performance. In the heavy load region, the performance
of Distro closely approximates to the performance of the SRR algorithm.

The delay performance of the MSM algorithms is generally worse than other
algorithms in the light load region. Since the MSM algorithms use shared-memory
modules to resolve the contention for OPs, their delay performance in the heavy load
region are the best when compared with other architectures. This is compensated by
the high memory speedup.
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Figure 1.15. Illustration of a multi-rack switching system (1024× 1024, 4 racks)

1.5 Optical Packet Switching

1.5.1 Multi-rack Hybrid Opto-electronic Switch Architecture

The explosion of Internet traffic has brought about an acute need for broadband com-
munication networks. This heightens the demand for high-performance switches /
routers more than ever and terabit switching systems are now receiving much at-
tention. However, such systems with high power consumption and large numbers
of ports can no longer be built in a compact, single-rack fashion [41]. Most high-
capacity switches currently under development employ a multi-rack system archi-
tecture, as shown in Figure 1.15, with the switching fabric in one rack and line cards
spread over several racks. Such racks are connected to each other via cables.

Besides the overall architecture there is the choice of hardware switch compo-
nents. This includes:

• Packet buffering and processing: because of the immaturity of optical buffering
technology, such as fiber delay lines (FDL) [42], packets are still buffered and
processed electronically.

• Interconnects: cables replace the backplane in multi-rack systems. Interconnects
can be copper or parallel optical cables. However, compared to copper cables,
parallel optics are favored for higher bandwidth, lower latency and extended link
length beyond copper capabilities [43].

• Fabric: The fabric can be electronic or optical. Suppose a traditional electronic
fabric is used. In such a system architecture, a series of opto-electronic con-
versions are needed to switch packets. Line cards terminate high-capacity op-
tical fiber links from the network, and the received packets are processed and
buffered electronically. Since the switch is located in an independent rack, fiber
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links are used to transfer packets between the line cards and the switch fabric. It
is clear from the above description that the system introduces an additional layer
of opto-electronic (O/E) conversions between the interconnect and the switch
fabric, which results in high complexity and significantly higher cost. In addi-
tion, the central electronic fabric occupies valuable floor space, consumes a lot
of power, and poses several reliability problems owing to the large number of
high-speed active components.
An obvious evolution to this architecture is to try to replace the central electronic
fabric with an optical fabric [44, 45, 46, 47, 48]. Optical switch fabrics may
overcome the cost, power, space, and scalability problems that arise in sizing
traditional electrical backplanes into the terabit regime.

To this end, an opto-electronic hybrid switch based on the strengths of both elec-
tronics and optics is a practical and viable approach. This architecture uses electron-
ics for packet processing/scheduling/buffering and optics for packet transmission and
switching.

1.5.2 Optical Fabrics

The basic premise of optical switch fabrics is their high switching capacities and
reduction in O/E conversions. These advantages are significant as there is no need
for lots of expensive high-speed electronics. Furthermore, optical fabrics are cheaper
and smaller in physical size. They may also provide potential benefits including scal-
ability, high bit rate, and low power consumption. The technologies include optical
micro-electromechanical systems (MEMS)-based switching [49][50], thermal opti-
cal switching [51], electro-optic switching, bubble switches [52], etc. Reference [53]
gives a detailed comparison between these optical switching technologies.

We use optical MEMS fabric as an example. The basic switching elements of
MEMS are tiny micro-actuated free-rotating mirrors as shown in Figure 1.16. The
switching function is performed by reflection of the light. MEMS has several hundred
of these tiny mirrors arranged in arrays and integrated on a silicon chip. The two-
dimensional (2D) optical MEMS has mirrors arranged in a crossbar configuration
[54]. Figure 1.17 shows a photo of a 2D × switch fabric made by AT&T [55].
Collimated light beams propagate parallel to the substrate plane. When a mirror is
activated, it moves into the path of the beam and directs the light to one of the outputs
by making a 45 angle with the beam. In general, the ( ) mirror is raised to direct
light from the th input fiber to the th output fiber. The mirror is no larger in diameter
than a human hair. Several hundred such mirrors can be built on a chip no larger than
a few centimeters square. Since MEMS create so many mirrors on a single chip,
the cost per switching element is relatively low. Therefore, MEMS allow low-loss
large-port-count optical switching solutions at very low cost per port.

Although there are many advantages to using optical fabrics as mentioned before,
these technologies are still emerging and usually exist in sub-optimal form today. The
reconfiguration times (or reconfiguration delay) of optical fabrics are much longer
than those of electronic fabrics. For example, a MEMS-based optical fabric needs
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Figure 1.16. Illustration of a 2D MEMS approach to construction of the optical switch fabric

Figure 1.17. 2D × switch fabric demonstrated by AT&T

Table 1.1. Reconfiguration delay times for some optical switching technologies

Switching technology Delay
Optical Mirror/gap-closing electrostatic actuator 7 ms
MEMS 1× 2MOEMS switch based on silicon-on-insulator 32–200 ns

and polymeric waveguides
Thermal Bubble-actuated switch 1 ms
optical Fully packaged polymeric four arrayed 5 ms
switch 2× 2 DOS

Electro-optic Electroholographic (EH) optical switch (1× 2) 10 ns
switch Liquid crystal holographic optical switch (1× 8) ms

Electronically switchable waveguide 10–50 ns
Bragg gratings switch (2× 2)

to adjust the angles of the fabric mirrors to set up new connections. This introduces
mechanical settling, synchronization, and other time-consuming operations. These
operations take times from hundreds of nanoseconds to a few milliseconds [53].
Table 1.1 samples the reconfiguration delay times for several different technologies.
This is around 10 to 105 time slots for a system with a slot time equal to 50 ns (64
bytes at 10 Gb/s).
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1.5.3 Reduced Rate Scheduling

As introduced earlier, the scheduling task in all switches is to find a one-to-one bi-
partite match between inputs and outputs to switch out the packets, no matter if the
fabric is optical or electronic. Generally in each time slot, the electronic switch runs
the scheduling, sets up a new fabric connection, and then transfers the corresponding
cells.

However, this slot-by-slot approach is not practical for optical switches. For ex-
ample, if the reconfiguration delay equals one time slot, one cell transmission takes
two time slots. One time slot is for scheduling and connection setup (fabric recon-
figuration), the second time slot is for actual transmission. In other words, only half
of the fabric bandwidth is used for cell transmission (which is effective bandwidth);
while the other half is wasted for reconfiguration. For a switch which transfers 64B
packets at a 40 Gb/s line rate and suffers a 100 ns reconfiguration delay, the effective
bandwidth is as low as 10%. If the reconfiguration delay is not addressed by a proper
scheduling scheme, it can severely cripple the performance of optical switches. It is
clear that the scheduling rate must be reduced to compensate for the reconfiguration
delay. Each schedule holds for some time rather than changing at every time slot.

The reduced rate scheduling is not a simple extension of scheduling algorithms
introduced in Section 1.2. It has been proven that the scheduling problem for optical
switches with reconfiguration delay is NP-hard [48]. Currently, most of the reduced
rate scheduling algorithms use the time slot assignment (TSA) approach [56, 57, 58,
48] and provide heuristic solutions.

1.5.4 Time Slot Assignment (TSA) Approach

The TSA-type of algorithm periodically accumulates incoming traffic and maps this
batch to a set of switch configurations. The objective of TSA scheduling in an optical
switch is to find a set of fabric configurations (or schedules) and their respective
holding time, to switch out all of the accumulated traffic, and to maximize the fabric
utilization. In other words, this is equivalent to minimizing the total transmission
makespan, which includes the time spent in transmitting traffic and the time spent in
reconfiguring the fabric. This is proved to be NP-hard under non-zero reconfiguration
delay [48]. All algorithms introduced here are heuristic.

Scheduling Scheme

Using the TSA scheduling scheme, the switch works in a three-stage accumulation,
scheduling, and transmission cycle. The length of the accumulating stage is set to be
a predefined system constant . Incoming traffic in these time slots are stored in
traffic matrix . For a × switch, = ( ) is a nonnegative integer ×
matrix. represents the number of cells received in input whose destinations are
output during the accumulating stage. The scheduling stage then finds a set of
schedules 1 2 for the accumulated traffic. Each schedule will be held
for 1 2 time slots respectively. Following the scheduling decision, the
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Figure 1.18. TSA scheduling example

transmission stage sets up the fabric and switches out the traffic repeatedly until all
packets are sent out. The transmission makespan is equal to

P
=1 + . Figure

1.18 shows an example of TSA scheduling in a 3× 3 switch.
The three-stage TSA operations can be further accelerated by using a pipelining

framework as shown in Figure 1.19, with each stage running in time slots. Notice
that since the transmission stage suffers from a reconfiguration delay and poten-
tially empty time slots (that exist when a particular connection is held with no more
packets to transmit), speedup is generally needed to ensures it finishes within
time slots.

TSA algorithms are favored because of their good features:

• Stability: because the traffic batch gathered in the accumulation stage is always
sent out in the transmission stage, TSA scheduling is stable under any admissible
traffic patterns.

• Bounded cell delay: the pipeline diagram indicates that a cell will go through
the switch within 3 slot times. This bounded worst cell delay (3 ) makes it
possible to provide QoS guarantees.

For the required buffer size, it is observed that traffic from at most three different
batches may appear in a particular input buffer at the same time. Assume B is the
number of bits sent to one input per time slot. A buffer of size 3 is enough for
each input and 2 for each output. If all ports are considered, the switch needs at
most 5 bits buffer size.
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Figure 1.19. Pipelined TSA execution with two traffic batches

1.5.5 DOUBLE Algorithm

Early TSA algorithms assume the reconfiguration delay to be zero [56] or infinite
[57] for simplicity. However, the extreme assumptions on reconfiguration delay are
no longer practical in optical switching systems. A recent DOUBLE algorithm [58]
considers scheduling under moderate reconfiguration delays. It performs better than
algorithms with extreme assumptions under a large spectrum of reconfiguration delay
values [58].

DOUBLE works by separating the traffic matrix into coarse and fine matrices
and devotes configurations to each. Coarse matrix and fine matrix are gen-
erated in a way that ensures d e + . The algorithm first generates the
coarse matrix by dividing the elements of by and taking the floor. The
rows and columns of sum to at most (because of the admissible traffic assump-
tion), thus the corresponding bipartite multigraph can be edge-colored in colors.
Each subset of edges assigned to a particular color forms a match, which is weighted
by d e. The fine matrix for does not need to be explicitly computed because
its elements are guaranteed to be less than d e. Thus, any configurations that
collectively represent every entry of , each weighted by d e, can be used to
cover the fine portion. An example of DOUBLE execution is shown in Figure 1.20.

In summary, DOUBLE generates 2 schedules, each with holding length d e.
The total transmission makespan is 2 × d e + 2 × = 2 + 2 . DOU-
BLE has a time complexity of ( 2 log ), which is mainly determined by the
edge-coloring algorithm [59].

1.5.6 ADJUST Algorithm

Although the DOUBLE algorithm greatly enhances scheduling performance, its
scheduling decision is rigid and does not change according to different system para-
meters. For example, if there are two switching systems with the same switch port
number and accumulation time, but with different reconfiguration delay, DOUBLE
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Figure 1.20. Example of the DOUBLE algorithm

will generate identical scheduling. However, it is natural that when the reconfigu-
ration delay increases, the number of schedules should decrease to avoid incurring
large overhead. Furthermore, simulation shows that a fixed choice of matrix divi-
sion factor ( ) may cause a large fine matrix with high cost, especially when the
reconfiguration delay is relatively small compared to the accumulation length. All
the above greatly influence the flexibility and performance of the DOUBLE algo-
rithm. An enhancement ADJUST algorithm is therefore proposed. By introducing a
regulating factor =

p
, it is able to self-adjust with different systems.

Similar to DOUBLE, ADJUST works by first separating the traffic D into a quo-
tient matrix and a residue matrix and assigning schedules to each. The matrices are
generated by dividing the elements in D by . Under such a division, quotient
and residue matrices can be covered by and configurations, respectively. All
configurations hold for d e time slots. The total transmission makespan is then
( + ) + ( + ) (refer to [48] for details). The makespan is minimized
when =

p
. An example of ADJUST execution is shown in Figure 1.21. For

= 3, = 48 and = 1, the regulating factor =
p

= 4.
It is obvious that the ADJUST algorithm always outperforms DOUBLE in the

sense of makespan minimization. In fact, the DOUBLE algorithm can be viewed as
a special case with set to 1.
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Figure 1.21. Example of the ADJUST algorithm

1.6 Conclusion

In this chapter, we have presented and discussed different router and ATM switch
designs. We have discussed the bufferless switch architecture, the buffered switch
architecture, the Clos-network architecture and the optical switching architecture.

The IQ crossbar switch is of interest due to its low hardware requirements, scal-
ability and popularity. An IQ switch adopting a FIFO queue structure suffers from
the HoL problem, which reduces the throughput of the switch to nearly half its avail-
able bandwidth. The speedup-based solution relies on the availability of advanced
technology in terms of fast memory. However, this is totally impractical for high-
performance routers. Very high speed is either uneconomical or simply impossible to
achieve. The well-known efficient VOQ architecture is used to overcome the block-
ing problem and is of interest because of its ability to improve the switching capacity
by several orders of magnitude. Despite its popularity, the VOQ solution has its own
problems. A centralized scheduler is required to configure the switch so that, at each
time slot, each input sends one cell to at most one output and each output receives
one cell from at most one input.

In order to alleviate the centralized scheduler’s task, the VOQ/BCS was pro-
posed. The VOQ/BCS architecture is based on the strength of the VOQ architecture
at the input side coupled with the internally buffered crossbar. This architecture has
many advantages compared to the IQ switch. The internal buffering element enables
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totally distributed VOQs arbitration and the scheduler is not centralized anymore.
The distributed nature of the arbitration improves the switching performance by sev-
eral orders of magnitude. By means of computer simulation, we showed the improve-
ment of the VOQ/BCS over the IQ switch. Furthermore, the VOQ/BCS doesn’t need
any additional cost such as speedup.

In an attempt at scalability, single-stage switching techniques are considered to
be inherently limited by their quadratic complexity. The Clos-network architecture is
widely recognized as a very scalable architecture for high-speed switching systems.
So far, only limited success has been reported in the design of practical distributed
scheduling schemes for the Clos-network. The ATLANTA switch with MSM archi-
tecture is an example of a commercially successful Clos-network switch. However, it
necessitates internal bandwidth speedup. Recently, the CRRD and CMSD algorithms
have been proposed in order to overcome the throughput limitation and implemen-
tation complexity problem. Based on the static round-robin technique, SRRD has
been proposed to reduce the delay performance and deduce the hardware complexity.
However, due to the memory speedup up problem in the shared memory modules, the
MSM arrangement of the Clos-network switches hinder the scalability to very large
port size. A bufferless Clos-network architecture has been proposed in which the
shared memory modules are replaced by bufferless crossbar switching components.
Although it requires a greater communication overhead among distributed modules,
the bufferless Clos-network architecture is an efficient way to solve the scalability
problem in switching systems.

One attractive direction in building scalable switches and routers is to adopt opti-
cal switching techniques. However, a main challenge remains in efficiently queuing
the packets in the optical domain. The techniques (i.e. fiber delay lines) are not yet
mature enough to support such functionalities. A viable solution is to have a hybrid
switch architecture, with electronic buffers and optical fabrics. Having optical fab-
rics provides more scalability and higher switching speed over the electronic coun-
terparts.

We are still facing many challenging requirements pertaining to the design of
scalable and high-performance routers. In summary, the new generation of switches
and router should first be highly scalable in port number and interface speed. More-
over, routers have to offer many services to meet today’s customer needs such as
guaranteed delay, bounded delay variation, minimal packet loss and controlled ac-
cess. Finally, a router has to be cost effective.
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The stochastic Lyapunov methodology is a powerful analytical tool used to assess
the performance of queueing systems. We discuss here the main results obtained
applying this methodology to the context of packet switch architectures with input
queues, considering both an isolated switch and networks of switches. The method-
ology allows one to assess the limit performance in terms of throughput and delay;
as a consequence, it is used to devise optimal scheduling algorithms. The theoretical
results presented here can be applied to the practical design of high-speed packet
switches.

2.1 Introduction

In recent years, much attention has been devoted by the research community to the
design of input-queued (IQ) packet switching architectures and to the assessment of
their performance.

An IQ switch architecture, depicted in Figure 2.1, is usually built around a non-
blocking bufferless switching fabric and interconnecting input to output lines; ex-
amples of such fabric are crossbars, Clos networks, Benes networks, and Batcher–
Banyan networks. At any time the switching fabric can be configured to provide a

switch fabric1

P

input queues
(VOQ)

1

P

1

Figure 2.1. Basic architecture of a × IQ switch
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set of parallel input/output connections, later called “matching”, such that each input
(output) is connected with at most one output (input). All switching fabric connec-
tions run at the speed of the external lines (normally assumed to be equal for all inputs
and outputs); indeed, this allows the design of high-speed switching fabrics. Buffer-
ing and local processing is available for each external line in a line card that provides
termination of the line and interfacing to the fabric. In the case of contention, packets
are stored in buffers at the input line cards. IQ switches have become an attractive
architectural solution for the design of large-size and high-capacity packet switches
since seminal work [4, 23, 30, 31] showed that the negative effects on performance
of Head-of-the-Line (HoL) blocking [16] can be reduced or completely eliminated
by adopting per-destination queueing (also called Virtual Output Queueing - VOQ)
at input cards.

A major issue in the design of IQ packet switches is that access to the switching
fabric must be controlled by a scheduling algorithm, which operates on a (possibly
partial) knowledge of the state of input queues. This means that control informa-
tion must be exchanged among line cards, either through an additional data path,
or through the switching fabric itself, and that significant processing power must be
devoted to the scheduling algorithm, either at a centralized scheduler, or at line cards
in a distributed manner.

We refer in this chapter to the case of fixed-size data units, called “cells”, pos-
sibly obtained by segmenting variable-size packets (for example IP datagrams), and
to synchronous switch operation, according to which input/output connections are
changed synchronously at every cell time (called “slot”) for all ports. Cell-based de-
signs have been quite popular, as they permit one to reduce the complexity for both
the hardware architecture and the scheduling algorithm.

The problem faced by scheduling algorithms with VOQ can be formalized as
maximum size or maximum weight matching on a bipartite graph in which nodes
represent input and output ports, and edges represent cells to be switched. Edges may
be associated with weights related to the state of input queues. If is the number of
ports, then the total number of possible switching configurations (matchings) is !,
corresponding to the number of input/output permutations.

To achieve good scalability in terms of switch size and port data rate, it is es-
sential to reduce the computational complexity of the scheduling algorithm. But a
simpler algorithm may exhibit reduced performance. Hence, a possible solution is
to introduce moderate speedup with respect to the data rate of input/output lines [9]
in the switching fabric connections, as well as in the input and output memories. In
this case, buffering is required at outputs as well as inputs, and the term “Combined
Input/Output Queueing” (CIOQ) is used. Obviously, when the speedup is such that
the internal switch bandwidth equals the sum of the data rates on input lines, input
buffers become useless; in this case, the architecture becomes purely output-queued
(OQ).

Along with the search for low complexity, highly scalable, well performing,
switch architectures and scheduling algorithms, effort has recently been devoted to
the identification and development of analytical methodologies to assess the perfor-
mance achievable by IQ and CIOQ switch architectures. A complete set of general
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theoretical results could indeed provide an important framework to drive applied
researchers towards better performing solutions. To this end, the stochastic Lya-
punov function methodology played a fundamental role, since it permitted one to
obtain most of the known theoretical results about the throughput of IQ and CIOQ
switches. In addition, the methodology was applied in the wider scenario of a net-
work of switches, providing new insights into their performance.

In this chapter we first briefly introduce the stochastic Lyapunov function method-
ology, showing how it can be successfully applied to determine the stability region
of a system of queues; then, we summarize the main results about throughput per-
formance of IQ and CIOQ architectures. We also show how the stochastic Lyapunov
function methodology can be successfully applied to obtain bounds on the packet
delay in IQ and CIOQ switches. Finally, we discuss the main results obtained for a
network of switches.

2.2 Theoretical Framework

We introduce the theoretical framework to describe all the results regarding both
switches in isolation and networks of switches, starting from the notation of a generic
queueing system.

2.2.1 Description of the Queueing System

Consider a system of discrete-time queues (of infinite capacity) represented by1

vector , whose th component, 0 , is a descriptor associated with the
th queue in the system. The system of queues handles classes of customers.

Each customer arrives at the network from outside, receives service at a number
of queues, and leaves the network. Customers change class every time they move
through the network. We suppose that each class of customers, 0 ,
univocally identifies a queue in the system at which all class customers are queued,
i.e. all customers of class are queued at the same queue; then . Let ( ) =
be the system location function that associates each class of customers with the
queue at which class customers are queued. 1( ) is the counter-image of
through function ( ). In general 1( ) returns a set of customer classes. When
= , each customer class is in one-to-one correspondence with a queue.
Let = (

(0) (1) ( 1)
) be the vector whose th component ( ),

0 , represents the number of customers of class in the system at time .
We say that the set of customers of the same class forms a virtual queue in the system
of queues; thus we indicate the set of customers of class with the term “virtual
queue ”. We suppose that the service times required by customers of all classes are
deterministic and equal to one timeslot. We consider only nonpre-emptive atomic
service policies, i.e. service policies that serve customers in an atomic fashion, never
interrupting the service of the customer that is currently in service.
1 All vectors are defined as row vectors.
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The evolution of the number of queued customers is described by ( )
+1 =

( )
+

( ) ( ), where ( ) represents the number of class customers entering virtual
queue (and thus physical queue ( )) in time interval ( +1], and ( ) represents
the number of customers departing from virtual queue in time interval ( + 1].

= (
(0) (1) ( 1)

) is the vector of entrances in the virtual queues, and
= (

(0) (1) ( 1)
) is the vector of departures from the virtual queues.

With this notation, the system evolution equation can be written as

+1 = + (2.1)

The entrance vector is the sum of two terms: vector = (
(0) (1) ( 1)

)
representing the customers arriving at the system from outside, and vector =

(
(0 (1) ( 1)

) of recirculating customers; ( ) is the number of customers
departing from some virtual queue and entering virtual queue in time interval
( + 1]. Note that when customers do not traverse more than one queue (as is
typically the case for a switch in isolation), vector is null for all , and = .

For simplicity of notation, we assume static routing (the extension to the case of
dynamic routing is presented in [3]). The × matrix = [ ( )] is the routing
matrix, whose binary element ( ) = 1 iff a customer served at virtual queue
is moved to virtual queue . We assume that the system of queues forms an open
network, i.e.2 + + 2 + 3 + = ( ) 1 exists and is finite, i.e. is
invertible. Note that = . The law of evolution of virtual queues can thus be
rewritten as

+1 = + ( ) (2.2)

Let us consider the external arrival process = (
(0) (1) ( 1)

); we
suppose that arrival processes are stationary, i.e. [ ] = = ( (0) (1)

( 1)) does not depend on the time interval [ + 1).
The average workload [ ] provided at each virtual queue by customers that

in time interval [ + 1) entered the system of queues is given by [ ] = (
) 1.

Before proceeding, we recall some norm functions that will be helpful in the
sequel.3

Definition 1 Given a vector = ( ( ) 0 ), norm k k is
defined as

k k =

Ã
1X

=0

| ( )|
!1

2 [ ] denotes the expectation of random quantity . denotes the identity matrix, whose
elements are equal to 1 on the diagonal, and null everywhere else.

3 Here, denotes the set of non-negative integers, denotes the set of real numbers, and
+ denotes the set of non-negative real numbers.



www.manaraa.com

Theoretical Performance of Input-queued Switches 43

Definition 2 Given a location function ( ) = , from 0 to 0 ,
with , norm || ||maxL (the name refers to maximum queue length) is defined
as

|| ||maxL = max
=0 1

X
1( )

| ( )| (2.3)

2.2.2 Stability Definitions for a Queueing System

Several definitions of stability for a network of queues can be found in the technical
literature. We recall here some of them.

Definition 3 Under a stationary exogenous arrival process { } satisfying the
strong law of large numbers, i.e.:

lim

P 1
=0 = with probability 1

A system of queues is rate stable if

lim = lim
1

1X
=0

( ) = 0 with probability 1

where is the vector of queue sizes at time .

Definition 4 Under a stationary exogenous arrival process { }, a system of
queues is weakly stable if, for every 0, there exists 0 such that

lim {|| || }

where { } denotes the probability of event .

Definition 5 Under a stationary exogenous arrival process { }, a system of
queues is strongly stable if

lim sup [|| ||]

Any norm can be used in the two definitions above.
Note that strong stability implies weak stability, and that weak stability implies

rate stability. Indeed, the rate stability property allows queue sizes to grow indefi-
nitely with sub-linear rate, while the weak stability property entails that the servers
in the system of queues process the whole offered load, but the delay experienced by
customers can be unbounded. Strong stability implies, in addition, the boundness of
average queue sizes and customer delays.

A necessary condition for the system of queues to achieve stability is that the
average workload provided at each queue by customers entering the system of queues
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in time interval [ + 1) does not reach 1. This condition, that we call the no-
overload condition, is also a sufficient condition for stability in any BCMP type
network of queues [7]. This condition can be formalized as

|| ( ) 1||maxL 1 (2.4)

In general, as shown in [6, 10, 11], this condition does not guarantee the stability of
a generic network of queues. Although condition (2.4) can be extended to

|| ( ) 1||maxL 1

when rate stability is considered, we will normally refer to the stricter formulation
(2.4) here.

2.2.3 Lyapunov Methodology

The systems under study can be modeled by discrete-time queues and they can be
described with Discrete-Time Markov Chain (DTMC) models. Hence, we assume
that the process describing the evolution of the system of queues is an irreducible
DTMC, whose state vector at time is = ( ), , ,

0
, and = + 0. is the combination of vector and a vector

of 0 integer parameters. Let be the state space of the DTMC, obtained as a
subset of the Cartesian product of the state space of and the state space
of .

From Definition 4, we can immediately see that if all states are positive re-
current, the system of queues is weakly stable; however, the converse is generally
not true, since queue sizes can remain finite even if the states of the DTMC are not
positive recurrent due to instability in the sequence of parameter { }.

The following general criterion for the (weak) stability of systems that can be de-
scribed with a DTMC is useful in the design of scheduling algorithms. This theorem
is a straightforward extension of Foster’s Criterion; see [13, 19, 33].

Theorem 1. Given a system of queues whose evolution is described by a DTMC
with state vector , if a lower bounded function ( ), called Lyapunov
function, : can be found such that4 [ ( +1) | ] , , and
there exist + and + such that || ||

[ ( +1) ( ) | ] (2.5)

then all states of the DTMC are positive recurrent and the system of queues is weakly
stable.

Note that an explicit dependence of the Lyapunov function on the time index
is allowed, so that it is possible to write explicitly ( ) = ( ).

4 We use the elementary notation for the conditional expectation, i.e. [ | ] =
[ ] { }, where is an event set.
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If the state space of the DTMC is a subset of the Cartesian product of the
denumerable state space and a finite state space , the stability criterion can
be slightly modified, since the stability of the system can be inferred only from the
queue size state vector .

Corollary 1. Given a system of queues whose evolution is described by a DTMC
with state vector , and whose state space is a subset of the Cartesian
product of a denumerable state space and a finite state space , then, if a
lower bounded function ( ), called the Lyapunov function, : can
be found such that [ ( +1) | ] and there exist + and

+ such that : || ||

[ ( +1) ( ) | ] (2.6)

then all states of the DTMC are positive recurrent.

In this case, the system of discrete-time queues is weakly stable iff all states of the
DTMC are positive recurrent.

In the following, we restrict our analysis to systems of queues for which Corol-
lary 1 applies. The following criterion for strong stability extends the previous result:

Theorem 2. Given a system of queues whose evolution is described by a DTMC
with state vector , and whose state space is a subset of the Cartesian
product of a denumerable state space and a finite state space , then, if a
lower bounded function ( ), called the Lyapunov function, : can
be found such that [ ( +1) | ] and there exist + and

+ such that : || ||

[ ( +1) ( ) | ] || || (2.7)

then the system of queues is strongly stable.

We report here the proof of the theorem, first derived in [21]. This proof is useful for
readers interested in a practical application of the methodology; some intermediate
mathematical steps will also be referred to later.

Proof. Since the assumptions of Theorem 1 are satisfied, every state of the DTMC
is positive recurrent and the DTMC is weakly stable. In addition, to prove that the
system is strongly stable, we shall show that lim sup [|| ||]

Let be the set of values taken by for which || || (where (2.7) does
not apply). It is easy to prove that is a compact set. Outside this compact set,
Equation (2.7) holds, i.e.

[ ( +1) ( ) | ] || ||

Considering all that do not belong to , we obtain

[ ( +1) ( ) | ] [|| || | ]
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Instead, for , with a compact set,

[ ( +1) | ]

where is the maximum value taken by [ ( +1) | ] for in .
By combining the two previous expressions, we obtain

[ ( +1)]

{ }+ { } { [ ( ) | ] [|| || | ]}
+ [ ( )] [|| ||] + 0

0 is a constant such that

0 { [ ( ) | ] + [|| || | ]} { }
Note that 0 is finite, being a compact set. By summing over all from 0 to
0 1, we obtain

[ ( 0)] 0 + [ ( 0)]
0 1X
=0

[|| ||] + 0 0

Thus, for any 0, we can write

0

0 1X
=0

[|| ||] +
1

0
[ ( 0)]

1

0
[ (

0
)] + 0

[ ( 0)] is lower bounded by definition; assume [ ( 0)] 0. Hence

0

0 1X
=0

[|| ||] +
1

0
[ ( 0)]

0

0
+ 0

For 0 , being [ ( 0)] and 0 finite, we can write

0

0 1X
=0

[|| ||] + 0 (2.8)

Hence lim 0

1
0

P
0 1
=0 [|| ||] is bounded. Since the DTMC has posi-

tive recurrent states, there exists lim [|| ||]. Furthermore, if the sequence
[|| ||] is convergent, the sequence 1

P 1
=0 [|| ||] converges to the same limit

(the Cesaro sum):

lim [|| ||] = lim
1

1X
=0

[|| ||]

But the right-hand side is seen to be bounded; hence, lim [|| ||]
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A class of Lyapunov functions is of particular interest:

Corollary 2. Given a system of queues as in Theorem 2, then, if there exists a sym-
metric copositive 5 matrix × , and two positive real numbers + and

+, such that, given the function ( ) = , : || || ,

[ ( +1) ( ) | ] || || (2.9)

then the system of queues is strongly stable. In addition, all the polynomial moments
of the queue size distribution are finite.

This is a re-phrasing of the results presented in [18, Section IV]. In particular, the
identity matrix is a symmetric positive semidefinite matrix, hence a copositive
matrix; thus, it is possible to state the following:

Corollary 3. Given a system of queues as in Theorem 2, if there exist +

+ such that : || ||
[ +1 +1 | ] || || (2.10)

then the system of queues is strongly stable, and all the polynomial moments of the
queue size distribution are finite.

2.2.4 Lyapunov Methodology to Bound Queue Sizes and Delays

The Lyapunov methodology is also useful to evaluate some bounds on average queue
size and average delay of a single IQ switch, as described in [22, 29].

The key observation is that the proof of Theorem 2 provides a first bound on the
limit behavior of [|| ||]. Indeed, from (2.8):

lim [|| ||] 1
( + 0) (2.11)

where is the maximum taken by [ ( +1) | ] for , where =
{ || || }, and 0 is a constant such that

0 { [ ( ) | ] + [|| || | ]} { }
Unfortunately, this bound is often very loose; thus, tighter bounds can be obtained

by selecting special classes of Lyapunov functions.
Considering a system of queues satisfying the assumptions of Theorem 2, since

the DTMC describing the evolution of the queues is positive recurrent, if we assume
aperiodicity, the DTMC is ergodic. Moreover, since the system is strongly stable:

lim [ +1] = lim [ ]

In addition, if the Lyapunov function ( ) is a quadratic form, i.e. ( ) =
, since all the polynomial moments of are finite, it follows that:

5 An × matrix is copositive if 0 + .
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lim [ ( +1) ( )] = 0 (2.12)

An extension to Theorem 2 can easily be obtained by replacing in (2.7) || ||
with (|| ||), where (·) is a continuous function defined on +. In this case
with steps similar to those in the proof of Theorem 2, it is possible to prove that
lim [ (|| ||)] .

It is now possible to state the following theorem (from [22]) that provides a
stronger and more general bound than (2.11).

Theorem 3. Given a system of queues whose evolution is described by a DTMC with
state vector , whose state space is a subset of the Cartesian product
of a denumerable state space and a finite state space , and for which all
the polynomial moments of the queue sizes distribution are finite, if a lower bounded
polynomial function ( ), : , can be found, such that

[ ( +1) | ]

and there exist two positive real numbers + and +, such that

[ ( +1) ( ) | ] (|| ||) : k k (2.13)

with ( ) a continuous function in +, then

lim [ (|| ||)]

lim (|| ||) + ( +1) ( ) |
¸
{ } (2.14)

2.2.5 Application to a Single Queue

Consider a simple discrete-time (or time-slotted) ( ) 1 queue with infinite
buffer, where customers arrive in batches of size at geometrically spaced time in-
tervals, and require a deterministic service time (equal to one time slot). Such a
queue can provide a simplified model for either a multiplexer of cell flows, or an
output interface of an OQ cell switch, and can serve as an illustratory example of the
methodology that we later apply to more complex queueing models of IQ and CIOQ
cell switches.

Let be the number of customers in the queue at time slot ; let be the
number of arrivals, and the number of departures, during time slot . Let =
[ ] be the average arrival rate. Observe that both [ 2 ] and are finite.

The equation describing the evolution of this system over time is

+1 = + (2.15)

where
=

½
1 if 0
0 otherwise (2.16)



www.manaraa.com

Theoretical Performance of Input-queued Switches 49

This simple queuing model corresponds to an irreducible discrete-time Markov chain
(DTMC).

Now consider the following linear Lyapunov function: ( ) = . If we fix
0, then we can write (2.5) as follows:

[ ( +1) ( ) | 0] = [ ] = 1

Hence, thanks to Theorem 1, the queue is weakly stable for 1.
Now consider the following quadratic Lyapunov function: ( ) = 2 . If we

let , then we can write (2.7) as follows:

[ ( +1) ( ) | ] = [2( ) + ( )2 | ] =

2( 1) + [( 1)2]

Now,

lim
[ ( +1) ( ) | ]

2(1 ) (2.17)

and Theorem 2 proves the strong stability of the queue in the case 1.
After evaluating (2.17), we can apply Theorem 3, using (|| ||) = , to

bound the average queue size [ ]. Letting :

lim [ ] lim +
2(1 ) + ( )2

2(1 )

¯̄̄ ¸
= lim

( )2

2(1 )

¸
=

2 2 + 2

2(1 )

¸
=

[ 2 ] 2 2 +

2(1 )

since [ ] = because of ergodicity, and [ ] = [ 2 ] because is a binary
variable.

Note that the result obtained is the equivalent of the Pollaczek–Khinchin for-
mula [17] for our discrete-time ( ) 1 queue.

From queue size bounds, the derivation of bounds on the average cell delay is
easy, thanks to Little’s result.

The procedure for the derivation of bounds on the queue size variance is identical,
but requires the use of a different function: ( ) = 3 . We omit the details.

2.2.6 Final Remarks

We notice that the stochastic Lyapunov methodology is a rather simple and powerful
tool, which has been successfully applied to prove either the weak stability or strong
stability of several complex systems of queues, such as IQ switches.

The application of stochastic Lyapunov function methodology imposes, how-
ever, some rather strong assumptions on the exogenous { } arrival process. Even
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if some extensions to more general cases are possible, usually the sequence of vari-
ables { }, is required to be a DTMC; and thus, the exogenous arrival process at
the system, { }, needs to form an i.i.d. random variable sequence.

More advanced analytical tools, such as fluid models, can be applied to prove rate
stability under relaxed assumptions on the exogenous arrival process { } (fluid
models only require { } to be a stationary arrival process satisfying the strong law
of large numbers).

2.3 Performance of a Single Switch

We consider IQ or CIOQ cell-based switches with input ports and output ports,
all running at the same cell rate (and we call them × IQ or CIOQ switches). The
switching fabric is assumed to be non-blocking and memoryless, i.e. cells are only
stored at switch inputs and outputs.

At each input, cells are stored according to a Virtual Output Queueing (VOQ)
policy: one separate queue is maintained at each input for each input–output couple.
We do not model possible output queues since they never become unstable under
admissible traffic patterns. The total number of input queues in each switch is =
2, which is also equal to the number of customer classes in the general queueing

model: = .
The switch in isolation can be modeled as a system comprising virtual queues.

Let ( ) = + be the virtual queue at input storing cells directed to output
, with = 0 1 2 1.

We define three functions referring to VOQ ( ):

• ( ): returns the index of the input card in which the VOQ is located;
• ( ): returns the index of the output card to which VOQ cells are directed.

We consider a synchronous operation, in which the switch configuration can be
changed only at slot boundaries. We call internal time slot the time necessary to
transmit a cell at an input port (or to receive it at an output port). We call external
time slot the duration of a cell on input and output lines. The difference between
external and internal time slots is due to switch speedup, and to possibly different
cell formats (e.g. due to additional internal header fields).

At each internal time slot, the switch scheduler selects cells to be transferred from
input queues to output queues. The set of cells to be transferred during an internal
time slot must satisfy two constraints: (i) at most one cell can be extracted from the
VOQ structure at each input, and (ii) at most one cell can be transferred towards each
output, thus resulting in correlation among server activities at different queues.

In the following, we will discuss the stability properties for IQ switches and
CIOQ switches with speedup 2; in addition, we will show some delay bounds for IQ
switches. Before proceeding, we introduce some other mathematical notation.

We adapt the definition of || ||maxL to the case of the single switch.
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Definition 6 Given a vector = ( ( ) = + = 0 1
1), the norm || || is defined as:

|| || = max
=0 1

X
1( )

| ( )|
X

1( )

| ( )|

The constraint on the set of cells transferred through the switch can be formalized
in the following manner.

Definition 7 At each time slot, the scheduler of an IQ switch selects for transfer
from queues = ( ( )) a set of cells denoted by vector = ( ( )

{0 1} = + = 0 1 1) so that || || 1. Set is said to be
a set of non-contending cells, or a switching vector.

In order not to overload any input and output switch port, the total average arrival
rates in cells/(external slot) must be less than 1 for all input and output ports; in this
case we say that the traffic pattern is admissible.

Definition 8 The traffic pattern loading an (isolated) IQ switch is admissible if and
only if || [ ]|| = || || 1.

Note that any admissible traffic pattern can be transferred without losses in an
OQ switch architecture with infinite queues.

A traffic is said to be uniform if ( ) = , for 0 , and 0 1.
Finally we say that a system of queue achieves 100 % throughput when it is

strongly stable under any admissible i.i.d arrival process.

2.3.1 Stability Region of Pure Input-queued Switches

We say that an IQ switch adopts a Maximum Weight Matching (MWM) scheduling
policy if the selection of the switching vector in each slot is implemented according
to the following rule:

= arg max
D

(2.18)

where is a vector of weights associated to VOQs, and D denotes the set of
all possible ! switching vectors at time . Note that, for any D ,
represents the weight of matching .

When the policy maximizes the number of cells to transfer (corresponding to the
binary case, i.e. ( + )

= 1 if the corresponding VOQ is not empty, 0 otherwise),
the policy computes a maximum size matching.

Note also that a matching is said to be maximal when no other edge can be
added, without violating the switching constraints || || 1; in general, a maxi-
mal matching may not be maximum.

Pure IQ switches (i.e. switches with no speedup) implementing a MWM schedul-
ing algorithm were proved to achieve the same performance in terms of throughput of
OQ switches under a wide class of traffic patterns. This fundamental result was first
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obtained in [25, 26] under i.i.d. arrival processes, applying the stochastic Lyapunov
function methodology, and then extended in [12] for more general arrival processes
applying fluid models. To obtain maximum throughput, VOQ weights must be pro-
portional to the queue size (e.g. = ), or to the age of the head-of-the-line
cell (Oldest Cell First policy) in the corresponding VOQ [26], or, finally, to the sum
of all cells stored in the corresponding input and output ports (Longest Port First
policy) [24].

In more recent years the previous results have been generalized in two main
directions:

• works [3, 28] provide more general characterization of scheduling algorithms
that guarantee 100% throughput in pure IQ architectures;

• works [15, 28, 34] exploit the system memory (i.e. the fact that and +1

are strongly correlated) to simplify the scheduling algorithms while guaranteeing
100% throughput for IQ architectures.

In the following we report two results; the first, taken from [3], generalizes the
result in [26] on MWM optimality; the second, taken from [34], proposes a simple
algorithm that exploits system memory.

Definition 9 Let ( ) be a regular function6 1[ + + ]. An IQ
switch adopts a ( )-max-scalar scheduling policy if the selection of the switching
vector in each slot is implemented according to the following rule:

= arg max
D

( ) (2.19)

where is the vector of queue sizes, andD denotes the set of all possible switch-
ing vectors at time .

Note that when ( ) = , the above policy corresponds to the usual MWM.
The following is the main stability result, which is an extension of [26].

Theorem 4. Let ( ) be a regular function 1[ + + ] such that:

1. ( ) defines a conservative field, i.e.I
( ) ( ) = 0 (2.20)

for each regular closed line in +

2. ( ) grows to infinity when grows to infinity; formally, there exists a finite
0 such that:

lim inf
|| ||

|| ( )||
|| || (2.21)

3. all null elements of remain null:

[ ] ( ) = ( ) (2.22)
6 denotes the set of continuous functions with continuous th derivative, 1 .
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Then an IQ switch adopting the ( )-max-scalar policy is strongly stable under
any admissible i.i.d. traffic pattern.

Proof. Let us define the function L( ):

L( ) =

Z
( ) ( ) (2.23)

L(0) = 0 (2.24)

where is an open regular line with endpoints 0 and .
By definition L( ) 2[ + ]. It is easy to verify that, for each

+ , L( ) 0. To see this, it is sufficient to consider a straight line parallel
to vector . Since + , both ( ) and ( ) in (2.23) belong to +

for all , so that also L( ) + .
Let us consider L( ) as our Lyapunov function. Since the maximum number of

cells arriving in a slot at the switch is bounded, then || +1||2 is bounded for any
finite , and from the regularity of L( ) follows that

[L( +1) | ]

Finally, for || ||2 , by writing a Taylor series for L( + ) =
L( ) + L( )( ) + , we obtain:

[L( +1) | ] L( )

|| ||2 =

µ L( )( [ ] )

|| ||2

¶
=

µ
( )( [ ] )

|| ||2

¶ (2.25)

We must now show that (2.25) is smaller than a negative finite constant. By the
Birkhoff-von-Neumann theorem [8], every vector in + such that || || 1
belongs to the convex hull of the switching vectors. Since the arrival process is
admissible, hence it is internal to the convex hull generated by departure vec-
tors (|| || 1), there exists an 0, and a vector 0 = [ ] + ,
0 + , which is again internal to the convex hull (|| 0|| 1). We can write
[ ] = 0 , and substitute in the right-hand side of (2.25), whose numerator

becomes [ ( )( 0 ) ]. Now, by the linearity of functional ( )
with respect to , and the definition of ( )-max-scalar policy, it follows that,
under the assumptions of the theorem, ( ) 0 max D ( ) =
[ ] ( ) , thus:

[L( +1)| ] L( )

|| ||2
( )

|| ||2
Then, for || ||2 growing to infinity, using (2.21) and the fact that || || is always
finite,

[L( +1)| ] L( )

|| ||2
0

where 0 is a positive constant depending on and ( ).
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Coming back to optimal throughput algorithms which exploit system memory,
we present the landmark policy originally proposed in [34]. Notice that several better
engineered policies exploiting system memory have been proposed later [15, 28];
however due to lack of space we refer to the original papers for this class of policies.

The intuition of the approach in [34] is that, if we assume that weights correspond
to queue sizes, then correlation exists between the MWM computed in subsequent
time slots; indeed, if is the maximum weight matching computed at time , it
can easily be shown that

| 1 1| 2

This correlation can be exploited by memorizing the matching used in the previous
time slot; if the previous matching was optimal, now it can be considered a good
“guess” of the current optimal matching. In addition, the approach exploits random-
ness to search, at any time, a possible MWM.

This policy, as originally defined in [34], can be formalized as follows. Let be
a random matching chosen among all ! possible through, for example, a uniform
distribution. Now use as the matching, chosen between and 1, with the
maximum weight:

= arg max
{ 1}

[33] proves that this policy guarantees 100% throughput.

2.3.2 Delay Bounds for Maximal Weight Matching

Stability proved through Lyapunov methodology is asymptotic, since negative drift
is shown in the region k k . Unfortunately, this region has very limited
practical relevance, unless some queue sizes or delay bounds are available.

Bounds on the average queue size (and cell delay, as a consequence of Little’s
law) in a switch implementing MWM with = was obtained in [22] applying
a particular polynomial Lyapunov functions ( ). By applying Theorem 3, in [22]
it is shown that

[|| ||1] || ||1 || ||22
1 || || (2.26)

In the case of uniform traffic, a bound on the average size of individual input queues
can easily be obtained:

[ ( )]
2

1
(2.27)

where = || || represents the port load. Then by Little’s theorem the average cell
delay is obtained:

[ ] =
[ ( )]

[ ( )] 1
(2.28)

with [ ( )] = .
Other stochastic methodologies, as in [5, 27], have been applied to provide delay

bounds.
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2.3.3 Stability Region of CIOQ with Speedup 2

The implementation of optimal schedulers in pure IQ switches can be rather prob-
lematic since their algorithmic complexity is rather large (the execution of MWM
requires at least ( 3), see [32]).

However, simpler schedulers may lead to optimal performance if the switch is
provided with a moderate speedup 1. This consideration has encouraged re-
searchers to look for simple and efficient scheduling policies which can easily be
implemented in high bandwidth routers. These policies usually compute a maximal
size matching, as in the case of WFA [31], iSLIP [23], 2DRR [20], and many others
recently proposed.

An important theoretical investigation of these policies is provided in [12, 21],
where it has been proved that CIOQ switches with speedup 2 implementing any
maximal Size Matching scheduling (mSM) algorithm achieve 100% throughput.

Consider any queue ( ) = + in the VOQ structure, that stores cells at
input directed to output . Recall that cells stored in ( ) compete for inclusion in
the set of non-contending cells with cells stored in each queue ( 0) 0 = +
with 6= , and ( 00) 00 = + with 6= .

If ( ) is non-empty, the mSM algorithm generates a set of non-contending cells
that comprises at least one cell extracted from the interfering set ( )

( ) =
[
{ ( 0) ( 00)} (2.29)

(exactly one, if the cell is extracted from ( ); possibly two, if one cell is extracted
from a ( 0), 0 6= , and one from a ( 00), 00 6= ).

Because CIOQ switches have both input and output queues, in the sequel we will
use to indicate the state of the input VOQs, while indicates the state
vector of output queues.

Theorem 5. A CIOQ switch with speedup 2 adopting an mSM scheduler is
strongly stable under any admissible traffic pattern.

The stability of mSM scheduling algorithms with = 2 was first proved under a
weaker sense (rate stability) in [12] applying the fluid models methodology, and then
strengthened in [21, 22] applying the stochastic Lyapunov function methodology.
The proof we report is taken from [22].

Proof. Consider as Lyapunov function ( ) = , where ×
is such that

=
1 if = ( + ) mod = 0 1
1 if b c b c+
0 otherwise

i.e. =
P

( )
( ) is the number of cells stored in interfering queues. Fig-

ure 2.2 reports a sketch of the Q matrix structure.
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Q = +

0 P-1 P 2P-1 2P 3P-1 0 P-1 P 2P-1 2P 3P-1

0

P-1

P

2P-1

2P

3P-1

0

P-1

P

2P-1

2P

3P-1

Figure 2.2. Schematic block for the Q operator used as Lyapunov function

We need to prove that inequality (2.7) holds to prove system stability. Thus, re-
calling that +1 = + D , we have

[ ( +1) ( ) | ]

= [2 ( D ) + ( D ) ( D ) | ]

being a symmetric matrix. For || ||1 , it holds that

[2 ( D ) + ( D ) ( D ) | ]

= 2 [ | ] 2 [ D | ] + (|| ||1)

where lim|| ||1
(|| ||1)
|| ||1 = 0. But [ ] || ||maxL1 and

[ | ] = [ ] || ||maxL|| ||1 (2.30)

At the same time, for the definition of the mSM algorithm, which selects D com-
prising at least one cell from interfering set ( ), and given the speedup 2,

( [ ] )( ) ( ) 2 ( ) 1 { ( ) = 1 ( ) = 1}
2 ( ) { ( ) = 1} = 2 ( ) [ ( )] = 2 ( ) ( )

Thus
[ D | ] 2|| ||1 || ||1 (2.31)

Thus, there exist 0 and 0 such that:

[ ( +1) ( ) | ]

= 2 [ | ] 2 [ D | ] + (|| ||1)
|| ||1 : || ||1
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Finally, we emphasize that several other scheduling policies which do not fall
into the class of mSM have been shown to achieve optimal throughput in switches
with speedup 2 [21]. As an example, any scheduling policy according to which
the selected departure vector is such that

1

2
max
D

was proved to achieve optimal throughput in switches with speedup 2 [21].

2.3.4 Scheduling Variable-size Packets

All the results shown so far through the Lyapunov methodology assume that fixed-
size cells are switched across the switching fabric. To apply these results in the con-
text of an IP router, the hardware architecture must include some modules which,
at the inputs, chop the variable-size packets into fixed-size cells and, at the outputs,
reassemble the cells. Even if this architecture is common in practice, it requires ad-
ditional complexity to handle the conversion between packets and cells; hence, other
architectures have been designed to switch variable-size packets. Fortunately, some
theoretical results have been produced in recent years on the achievable throughput
of IQ switches handling variable-size packets [1, 14].

Variable-length packets are modeled in this context as trains of fixed-size cells
which have to be transferred to output ports through synchronous fabrics in contigu-
ous time slots. In paper [1], applying the stochastic Lyapunov function methodology,
it has been proved that a pure IQ switch with no speedup, implementing a variant of
the MWM algorithm allowing the transfer of cells originated by the same packet in
contiguous time slots, still achieves 100% throughput.

More precisely, denote by S the set of VOQs from which the transfer of a packet
occurs at time slot .

Theorem 6. An IQ switch with no speedup is strongly stable under any admissible
traffic pattern if at each time slot the departure vector is selected according to a
MWM scheduling algorithm

= arg max
D

(2.32)

in which VOQ weights are

( ) =

(
( ) if S

if S

This result was extended in [14] under a wider class of arrival processes by ap-
plying the fluid model methodology.
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2.4 Networks of IQ Switches

Consider the case of a network interconnecting many IQ switches, each of them run-
ning a MWM scheduling algorithm, which guarantees to achieve 100% throughput
when each switch is studied in isolation. It was shown in [6] that a specific network of
IQ switches implementing a MWM scheduling policy can exhibit unstable behavior
even when none of the switches are overloaded. This counterintuitive result opened
new perspectives in the research on IQ and CIOQ switches, reducing the value of
most of the results obtained for switches in isolation. In [6] the authors propose a
policy named LIN that, if implemented in each switch of the network, leads to 100%
throughput under any admissible traffic pattern when each traffic flow in the network
is leaky-bucket compliant. The LIN policy, however, is based on pre-scheduling cell
transmissions at each switch in the network, thus relying on exact knowledge of the
traffic pattern at each switch, an approach not feasible in practice. In addition, the re-
sult proved in [6] cannot easily be extended to more general traffic patterns in which
flows are not leaky-bucket compliant.

As an example of counterintuitive behavior, consider the network of eight IQ
switches depicted in Figure. 2.3, in which continuous lines represent links between
switches, and dashed lines represent information flows and their routing in the net-
work. Note that each pair of adjacent IQ switches (all pairs are alike) is traversed by
a locally originated flow, a locally terminating flow, and an in-transit flow. We run
simulation experiments in which the cell arrival process at the source of each flow is
Bernoulli, and the arrival rate for each flow is 0.33 times the link data rate; hence, the
traffic is admissible. In-transit and terminating flows are given weight 10 times larger
than locally originating flows. Figure 2.4 shows that queue sizes exhibit a divergent

IQS1 IQS2

IQS6 IQS5

IQS3

IQS4

IQS8

IQS7

Figure 2.3. The network of IQ switches considered in our simulation
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Figure 2.4. Queue sizes versus time in slots for the three flows at IQS1, when a local MWM
is computed at each switch

oscillating behavior when a local MWM scheduling is adopted.
We show in the sequel how to modify the MWM to guarantee the maximum

throughput in a network.

2.4.1 Theoretical Performance

We consider a network of IQ switches. Switch , 0 , has input ports
and output ports, all at the same cell rate. Each switch adopts VOQ at inputs.
Thus there are 2 different VOQs at switch .

Thus, the network of switches can be modeled as a system containing =P
2 virtual queues. We restrict our study to the case = , so that =

2 . Let ( ) be the function that returns the switch on which VOQ is located; let
( ) be the function that returns the index of the input card at switch ( ) on which

the VOQ is located; let ( ) be the function that returns the index of the output card
at switch ( ) to which VOQ cells are directed.

We adapt as follows the concept of || ||maxL to the case of a network of switches.

Definition 10 Given a vector = { ( ) = 2 + + 0
= 0 1 1}, the norm || || is defined as

|| || = max
= 0 1
= 0 1

X
1( ) 1( )

| ( )|
X
1( ) 1( )

| ( )|

(2.33)

At each time slot, a set of non-contending cells departs from the VOQs of each
switch. More formally, we say that, at each time slot, the departure vector
{0 1} must satisfy the condition:
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|| || 1

The × matrix = [ ( )] is the routing matrix: element ( ) = 1 for cells
departing from VOQ and entering VOQ .

Definition 11 The traffic pattern loading a network of IQ switches is admissible if
and only if

|| || = || ( ) 1|| 1

Note that an admissible traffic pattern can be transferred without losses in a net-
work of OQ switches.

The following results are taken from [3].

Theorem 7. An open network of IQ switches implementing the ( )-max-scalar
policy is rate stable under each admissible traffic pattern such that arrival sequences
at VOQs satisfy the strong law of large numbers, if:

• ( ) = ( )[( ) 1] defines a conservative field;
• ( ) satisfies conditions (2.21) and (2.22);
• ( ) = ( ) for all scalars .

Similarly to the case of a single switch in isolation, for a network of switches it is
possible to extend the result to more general functions ( ) under any admissible
i.i.d traffic pattern (i.e. under a smaller class of traffic patterns with respect to the as-
sumptions of Theorem 7), by directly applying the Lyapunov function methodology
to equations describing the stochastic evolution of the system.

Theorem 8. An open network of IQ switches implementing the ( )-max-scalar
policy is strongly stable under each i.i.d. admissible traffic pattern, if:

• ( ) = ( )[( ) 1] defines a conservative field;
• ( ) satisfies conditions (2.21) and (2.22).

As a consequence, the following result can be shown, corresponding to the policy
proposed in [33].

Theorem 9. An open network of IQ switches implementing the ( )-max-scalar
policy, with ( ) = ( ) 1 is rate stable under each admissible traffic pattern
such that the sequences of arrivals at VOQs satisfy the strong law of large numbers.

The previous stable policy corresponds to a local MWM matching where the weight
( ) associated to queue of size ( ) is given by

( ) = max{0 ( ) ( [ ])}
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when [ ] is the downstream queue where cells from queue are routed after
being served7.

The implementation of the ( )-max-scalar policy can be performed in a dis-
tributed fashion; however, in this case, the implementation requires an exchange of
information among neighbor switches. Some other possible solutions have been stud-
ied in [2].

2.5 Conclusions

In this chapter we have shown how the stochastic Lyapunov function methodology
was employed during recent years as a powerful and versatile analytical tool to as-
sess the performance of input queued switches. Thanks to this approach, researchers
have been able to study throughput and/or delay performance not only for isolated
switches, but also for networks of switches.

The brief discussion of the results reported in this chapter hides the main dif-
ficulty in employing this methodology; indeed, the design of a Lyapunov function,
specific to the system under study and suited to prove its stability properties, re-
quires creative effort, which is the most difficult step in the theoretical investigation.
We strongly recommend the interested readers to refer to all the original papers and
proofs in order to gain insight into the identification of the most suitable Lyapunov
function for the system under study.
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We discuss the control of a packet switch where delays due to mode switching
become important. Whereas most packet switch scheduling analysis assumes that
switches can operate with negligible delays, we consider what to do when this does
not hold.

Several practical situations can indeed lead to a time lag in switches, where
changing physical connections in the switch can take a significant time relative to
the high data rates processed in the fabric. If switches are forced to change modes
too frequently, this leads to a loss of throughput.

This chapter provides a synthesis of recent developments in packet switch
scheduling with delays. We present an overview of how to manage a switch when
there are forced delays at the switch; that is, when the required time to change from
one switching mode to another is nontrivial. If traditional policies such as weighting-
based or online fixed batch sizes are utilized, there can be a loss of throughput. We
will discuss the result that adaptive batch scheduling algorithms maintain maximal
throughput in a switch even in the presence of nontrivial delays.

3.1 Introduction

Switches provide the connections between network links via various architectures,
enabling packets of data to provide communication over the internet. A packet ar-
riving at the switch is stored in a buffer until connections in the switch allow it to
traverse toward its chosen destination.

Particularly in modern switches, several incoming lines are routed to several out-
going lines in the same switch. For example, the crossbar design of many switches
allows multiple simultaneous connections. Each input port can be connected to ex-
actly one output port, and each output port accepts connections from exactly one
input. Thus in a two-by-two switch, there are two modes available, connecting input–
output pairs (1 1) and (2 2) or (1 2) and (2 1). This is illustrated for the case of
two incoming and outgoing lines in Figure 3.1, where the switch is set to one of its
two available modes.
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2

11

2

Figure 3.1. A 2-by-2 crossbar switch. A crossbar switch connects multiple input to output
pairs, and can connect more than one pair at a time. This figure shows a 2-by-2 switch with
two input ports and two output ports. At any time, the crossbar architecture in the switch
allows each port to be connected to exactly one other port. There are two modes available,
connecting the pairs (1,1) and (2,2) or the pairs (1,2) and (2,1), as depicted above.

Modern switches also include features such as speedup, multicast capability and
class differentiation. All of these can be described via the model in this chapter,
but we focus this study on the particular issue of switch delays. The type of switch
defines the options available for processing packets.

Several recent studies have proposed algorithms for efficient packet scheduling
in high-performance networks (see, for example [1–4]). An important feature absent
from many of these analytical studies is the problem of switch delay. When a switch
transfers packets via one particular operational mode, it may not be possible to in-
stantaneously shift to a new mode. The ability to do this depends upon the switch
fabric and the scale of the switch.

Typically, if the delay between modes is ignored, switching policies tend to
operate with frequent mode changes. Algorithms such as matching-based policies
draw the switch toward a balanced load where many modes are equally desir-
able. While this has the advantage of load balancing the switch while maintain-
ing stability, the frequent mode changes can be highly inefficient. For example, if
a switch spends half of its time in each of two modes 1 and 2, the sequence
{ 1 2 1 2 1 2 1 2 } causes twice as much aggregate delay as the
sequence { 1 1 2 2 1 1 2 2 }. In a fully utilized switch, this ac-
tually reduces switch throughput, as will be explained further in this chapter.

3.2 Switching Modes with Delays: A General Model

Our model describing a general switch is illustrated in Figure 3.2, with queues and
service modes to select from. The queues are labeled Q = {1 2 }, with

each queue storing a unique type of packet.
We utilize virtual output queues, illustrated for a 2-by-2 switch in Figure 3.3.

Instead of having one buffer for each input port, the input port buffer is separated into
parallel queues, one for each output port. Thus there is a queue for each input–output
pair, avoiding potential problems such as head of line blocking [5] and keeping a
clear management of queue levels.
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Figure 3.2. The core model is illustrated above. Any switch can be described as cells waiting
in a set of parallel queues, and a finite set of available service modes or switch modes to choose
from. The selected mode describes the set of rates at which all of the queues are served under
that mode. In most switches (without speedup), this is a set of zero and one entries.

2

11

211

2

1

222

Figure 3.3. Virtual output queues. To avoid the potential effect of head-of-line blocking, each
input–output pair has its own queue. Packets within that queue can be served first-in-first-
out (FIFO) or according to some other discipline, without causing any unnecessary starvation
effects.

Time is divided into equal length time slots, labeled {0 1 2 }. We will
consider the dynamics of the switch in terms of these discrete units of time, but note
they can be arbitrarily small.

For the sake of simplicity, we will assume that a data packet can be divided into
units of workload called cells. ( ) is the number of cells arriving at queue in
time slot .

For this model, we describe everything in terms of -length vectors. The individ-
ual elements of the vector correspond to each queue. For example, the arrival vector
in time slot is ( ) = ( 1( ) 2( ) ( ) ( )).

Throughout this chapter we will refer to the vectors, mentioning individual sub-
script only when necessary.



www.manaraa.com

68 K. Ross and N. Bambos

At any time slot, the switch may be in one service mode , chosen from a fi-
nite set M={1,2,...,M}. Each mode has a corresponding -dimensional vector

= ( 1 2 ), where 0 is the number of cells removed
from queue in a single time slot, when the switch operates under mode . Arriving
cells are buffered immediately in their respective queues, and served in a first-in-
first-out (FIFO) manner within each queue.

Separating this analysis from most previous work, the mode selection is sequence
dependent. Two different modes cannot necessarily be used in consecutive time slots.
This takes account of many complexities in switches, including the case where the
time slots are small enough that switches cannot physically reconfigure as fast as the
packets can be transferred.

For any pair of distinct service modes, 1 and 2, is the required down time
from the activation of the first mode until the second can be activated. If mode 1

is used at time then 2 may not be used in the interval ( + ). In particular, if
1 and 2 are to be used consecutively then there can be no active service mode in

time slots ( + 1 + 2 + ).
Let = 0 denote the mode where no service is applied to any queue, corre-

sponding to 0 = 0, the zero vector. The scheduling problem is to select the service
mode ( ) for each time slot with the added constraint:

( + ) { ( ) 0} for {1 2 } (3.1)
In a related problem, one could consider nonuniform delays between

modes. The analysis of throughput in this chapter still holds by recognizing that
the longest required delay max = max M must be bounded, but
for simplicity in the exposition we will discuss the case of uniform delays where

= .
The backlog state ( ) of the queueing switch at any time is the -dimensional

vector of cell populations in the individual queues, that is,

( ) = ( 1( ) 2( ) ( ) ( )) (3.2)

where ( ) is total workload (number of waiting cells) existing in queue Q at
time {0 1 2 }. The service state ( ) of the switch at time is the service
vector

( ) = ( ) = ( 1( ) 2( ) ( ) ( )) (3.3)
chosen by the scheduling algorithm that the switch operates under via the selection
of mode ( ) at time . Clearly, ( ) = 0, the zero vector when mode ( ) = 0 is
selected.

The cell backlog in the switch at time can be expressed as

( ) = [ ( 1) ( 1)]+ + ( 1)

= (0) +
P 1

=0 ( )
P 1

=0
ˆ( )

(3.4)

for {1 2 } with (0) the starting backlog, and ˆ ( ) = min{ ( ) ( )}
ensures that no queue has negative workload in any time slot. This assumes a store-
and-forward switch, where packets cannot arrive and be processed in the same slot.
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The alternative, a cut-through switch, could also be described by adjusting the evo-
lution equations appropriately.

For each Q we assume that

lim

P 1
=0 ( )

= (0 ) (3.5)

that is, the long-term arriving traffic load for each queue is well defined, positive
and finite. We make no further restriction on the traffic traces. We do not assume
any particular statistics that may generate the traffic traces. This means that we allow
arrivals to different queues to be correlated and even directly dependent.

For a switch to be rate stable, we require

lim

P 1
=0 ( )

= lim

P 1
=0 ( )

= (3.6)

for each Q. One can see from (3.4) and (3.6) that for such rate stability it suffices
to show

lim
( )

= 0 (3.7)

that is, the workload in each queue is not growing linearly over time. Recall from
(3.1) that some of the time slots must have ( ) = 0, so the ability to guarantee (3.7)
is not immediately clear.

The set of -vectors for which there exists a sequence of ( ) vectors which
would give rate stability and hence satisfy (3.6) is known as the stability regionR. A
rate vector is called allowable if it is within the stability region. The stability region
R is the set of allowable rate vectors satisfying

R =
(

:
X
=1

for some 0
X
=1

= 1

)
(3.8)

In simple terms, a workload arrival rate is allowable, or in the stability region if
there exists a convex combination of available service modes which would serve at
least the arrival rate for every queue. If one knew in advance, an algorithm which
used each for the fraction of time and somehow minimized the time spent in
transition mode 0 = 0would ensure that (3.6) was satisfied. Here, we are concerned
with the case where is not known, and a scheduling algorithm allocates the switch
mode according to observed backlog.

3.3 Batch Scheduling Algorithms

Whereas most work on maximal throughput algorithms for packet switches considers
the online scheduling of each mode on a per time slot basis [1–4,6,7], here we present
batch policies, where several consecutive time slots are scheduled in a group.
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Batch policies are a natural approach in the presence of delays, since they take
a longer term perspective on scheduling. A sequence of packets are allowed to ar-
rive and form an aggregate group, or batch. This batch of packets are scheduled
together to be transferred through the switch in subsequent time slots. Since the
batch are scheduled together, the effect delays between mode changes can be re-
duced by scheduling consecutive slots with the same mode instead of alternating
between modes too frequently. We present two families of batch policies, with fixed
or adaptive batch lengths, and argue that the fluctuations in packet switch load make
it often preferable to utilize the adaptive policy.

3.3.1 Fixed Batch Policies

In most approaches that consider batches, such as round-robin based schemes, the
size of each batch is fixed. That is, the scheduling is done every say time slots,
for some appropriate batch size . In the extreme case, and indeed for many algo-
rithms, = 1 is assumed, scheduling just one time slot at a time. More general
algorithms schedule batches of modes, as seen in the examples here. We call these
policies/algorithms fixed batch schedules (FBS).

The utilization of a batch-based policy mitigates some of the effect of delays
between modes. For example, a batch might instruct the switch to use mode 1

for five time slots, and then mode 2 for three time slots, with only one transition
required from mode 1 to mode 2. A per time slot algorithm might use the same
combination of modes but in a different order, leading to more mode transitions and
therefore more down time.

Let us consider how the workload evolution would happen under an FBS policy.
We assume the existence of a static scheduling policy , that schedules a sequence
of modes and their associated delays over time slots based on the waiting workload

at the start of the batch. If it is possible to schedule all waiting packets at ,
will do so, otherwise it will schedule a sequence of modes to process a subset of the
waiting packets.

Let 0 = 0, and inductively define for = 0 1 2 3 the formation of batches
in FBS and their processing intervals, as follows.

1. At time = , schedule the batch demand ( ) of packets waiting in
the switch at time , according to the static schedule . The workload waiting
in ( ) is processed in the time interval [ + 1 + ] according to .

2. New packets arriving throughout the time interval [ + 1 + ] are not
processed, but stored until time +1 = + . Thus, at time +1 a new
batch ( +1) has been formed by accumulating the packets that arrived after

and up to time +1, plus any packets that were not completely served by
in the previous batch. The batch ( +1) is then scheduled at +1 according
to the static schedule and the process repeats itself.

The fixed batch schedules are simple to implement, especially if is easy to
calculate. There are two notable disadvantages, however, of the fixed batch policies.
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Figure 3.4. Fixed batch scheduling. The sample trace of a fixed batch scheduling algorithm
is shown. The workload in the vertical axis is recorded from three perspectives: (i) what the
server sees, (ii) what the server cannot see, and (iii) the total workload waiting.

Namely ( ) the batches are not responsive to bursts in the number and size of packets.
This means that if there is a relatively small backlog at the start of a batch, it will still
take time slots to process before the new arriving packets can be served, and ( )
fixed batches cannot guarantee maximal throughput for fixed .

Consider briefly why fixed batches cannot guarantee maximal throughput. In any
given batch, there is at least some down time 0, which varies based on the
schedule created by . This follows since each batch is independent of the previous
batch, so there must be some delay between consecutive batches (as well as any
delays within the schedule itself). Thus the switch is utilized for a fraction of at most

of the batch, and the throughput capacity is reduced by that fraction. In general
the reduction will be much more than that, since multiple switching times are usually
required in a given batch.

One could make the argument that for any R, there exists a large enough
batch size to maintain rate stability. However, the implementation of such a batch
policy would then require advance knowledge or in order to fix the appropriate
batch length. Further, such an argument exemplifies the other disadvantage above,
namely large batches can lead to large inefficiencies.

The workload evolution for FBS is illustrated in Figure 3.4, recording the total
workload as well as the workload in the current batch and the arriving workload for
the next batch. It is particularly informative to note that during the first batch, when
nothing is being processed, the workload grows very quickly.
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3.3.2 Adaptive Batch Policies

We contrast the FBS algorithms with a class of adaptive batch scheduling (ABS)
algorithms. In ABS, the batches are of different length, depending on the demand
waiting at the switch when the batch begins.

In a similar manner to the fixed batch schedule, each batch calculates a static
schedule based on the demand (backlog), but here the static batch is run to comple-
tion. During a static batch, new arrivals add workload to the switch. At the end of
each batch a new schedule is set based on the workload that arrived during the previ-
ous batch. If there is a lot of workload waiting, the schedule will use more time than
if a small workload is to be processed.

Suppose workload vector is given and also some static feasible processing
schedule (possibly suboptimal), which processes the demand in ( ) time
slots. corresponds to a sequence of service modes ( ), with appropriate down
time between changes inserted to satisfy the condition in (3.1).

Individual static batch schedules are considered in more detail later, but first con-
sider how would be used to process dynamically arriving data packets. The sched-
ule is referred to as a static schedule since it considers the fixed demand at the start
of the batch, and activates a schedule for subsequent time slots. Just as in FBS, the
batch schedule does not adjust with new arriving packets.

Starting at time 0 = 0, inductively define for {1 2 3 } the formation of
batches, as follows.

1. At time schedule the batch demand ( ) 6= 0 of packets waiting in the
queues at , according to the static schedule , which clears it at time +1 =

+ ( ( )). Packets in ( ) are processed in the time interval [ +
1 + ( ( ))].

2. New packets arriving throughout the time interval [ + 1 + ( ( ))]
are not processed, but stored until time +1 = + ( ( )). Thus, at time

+1 the previous batch ( ) has been completely cleared, and a new batch
( +1) has been formed by accumulating the packets that arrived after

and up to time +1. The batch ( +1) is then scheduled at +1 according
to the static schedule and the process repeats itself.

3. If no new packet arrives while a batch is served, or ( +1) = 0, simply
increment by default the time register +2 = +1 + 1 by one time slot.

According to the above scheme, the evolution of the increasing unbounded time
sequence { = 1 2 3 } is given by the following induction formula:

+1 =
+ ( ( )) if ( ) 6= 0
+ 1 if ( ) = 0 (3.9)

Note that the Nth batch ( ) is comprised of the workload that arrives throughout
the interval [ 1+1 ], and is processed throughout the interval [ +1 +1].

It is naturally possible to utilize excess capacity by processing new arrivals in
a previous batch. For example, a batch may schedule the switch to process a single
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Figure 3.5. Adaptive Batch Scheduling. The sample trace of an adaptive batch scheduling
algorithm. The workload in the vertical axis is recorded from three perspectives, (i) what the
server sees, (ii) what the server cannot see and (iii) the total workload waiting. This differs
from the fixed batch policy, where each batch is the same length.

queue when two could be served in parallel without additional time, if there were
workload in the second queue. If packets arrive at the parallel queue before the batch
begins processing the packets, they can be processed before the next batch is sched-
uled. We ignore these packets for the sake of analysis, except to note that this will
only improve the performance of the switch.

The trace of workload under an ABS algorithm is illustrated in Figure 3.5. The
batch lengths increase as the workload increases, and small batches are used when
the workload is small. The figure contrasts ABS with the case of fixed batch lengths,
which do not necessarily serve all the workload waiting for a single batch.

3.3.3 The Simple-batch Static Schedule

Here we focus on a static schedule known as simple-batch. The simple-batch policy
is based on the solution to the following linear program:

min
X
=1

such that
X
=1

0 (3.10)

A feasible solution to (3.10) is a sequence { } where represents the time
to spend in mode in order to clear the workload . The optimal solution clears
the demand in minimum time if there were no transition time restrictions from (3.1).
The solution to the linear program in (3.10) has at most nonzero values, cor-
responding to the set { 1 2 }. Since delays are uniform this corresponds
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to a total of delay within the batch. One could consider a more complicated
problem, optimizing over delays as well to make a potentially more efficient sched-
ule. Unfortunately, this would no longer be a strict linear program, since we would
require binary variables to recognize which modes were included. Fortunately, how-
ever, (3.10) turns out to be sufficient for stability, as seen in Section 3.5.

The simple batch policy solves the linear program in (3.10), and puts the service
vectors corresponding to nonzero values in some order { 1 2 }, and
inserts the necessary waiting time between modes. The modes are then scheduled as
follows:

1. Set = 1.
2. Use mode for time slots.
3. Wait time slots.
4. = + 1.

If = then wait and stop, else go to step 2.

It is easily seen that the simple batch schedule meets the demand and respects
the necessary transition requirements, since it uses a solution to (3.10). This static
schedule could be utilized in either FBS or ABS. Under ABS it would be run to
completion, whereas under FBS the schedule would either be truncated at the fixed
time , or the schedule would need to apply an additional constraint, scaling down
the total time used so that

P
+ .

The ordering of the service modes could be chosen according to a priority rule
or optimized for performance. For example, service to a priority queue could be
scheduled first within the sequence of modes selected by (3.10).

The simple-batch schedule has a total busy processing time of
P

and
maximum total transition time of . Recall from (3.8) that by stabilityP

=1 for some { } =1 with
P

=1 = 1. Given this, for any scalar
value 0 and workload vector , a multiple of that scalar, it follows that
( ) + .

3.4 An Interesting Application: Optical Networks

With the general switching model described in this work, a surprising number of
applications can be controlled using the switch scheduling algorithms. For example,
networks of optical fibers over large geographical areas have been modeled as a
generalized switch since they involve dynamic scheduling of cross-connects.

The application arises where packets are transmitted among a multiplicity of geo-
graphically separated source and destination nodes. Here the delay between modes is
required due to discrepancies in the distance traversed by each data packet. It occurs
in a recently developed wavelength-division multiplexed (WDM) transport network,
called Time-domain Wavelength Interleaved Network (TWIN) [8–10]. In TWIN the
queues correspond to pairs of nodes or cities, and the service configurations to the
combination of connections which can be simultaneously established. Just as in a
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Figure 3.6. TWIN network. Logical multipoint-to-point trees (one shown for each of the two
destinations), are overlayed on top of a physical topology. Node 1 interleaves its transmissions
to nodes 6 and 7 by tuning its laser to 6 when it wants to transmit a packet to node 6 and
to 7 when it wants to transmit a packet to node 7. Each internal node in the network simply
performs self-routing of packets based on their colors (i.e. wavelengths). For example, node 2
will route an incoming packet of 6 to node 4 and an incoming packet of 7 to node 5.

crossbar switch, each port can connect to one other port, each city in an optical net-
work can communicate with one other via the fiber-optic network.

TWIN defines an optical network with a simple core architecture consisting of
wavelength-selective cross-connects capable of routing incoming data packets to the
appropriate outgoing ports or fibers. The cross-connect configuration in the core is
fixed among source and destination nodes. Fast tunable lasers at the source nodes
send streams of data at frequencies corresponding to the destination nodes. In TWIN,
a unique wavelength is assigned to each destination , and sources that have data
to transmit to a particular destination use the wavelength assigned to that destination.

Due to this fixed-wavelength policy, the wavelength connections from various
sources to a particular destination can be viewed as an optical multipoint-to-point
connection of wavelength rooted at the destination . To ensure that packets of
the same wavelength do not arrive at the same destination simultaneously, sources
must coordinate their transmissions over time. TWIN relies on scheduling to avoid
such destination conflicts.

Figure 3.6 shows a simple TWIN architecture where multipoint-to-point opti-
cal connections rooted at two destinations (nodes 6 and 7) have been configured.
Typically, reconfigurations occur at a relatively long time scale (e.g. hours, days or
weeks), so the scheduling is performed on a fixed network connection configuration.
The individual packet forwarding based on assignment of appropriate colors at the
source is performed at a relatively small time scale (microseconds).

Time slots are such that each node can send or receive exactly one packet. At each
time slot, the scheduler needs to assign the appropriate wavelength to each tunable
laser. The scheduler must avoid collisions at destinations and make efficient use of
the time slots.
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Consider a network of nodes (representing cities) and denote their set by
C = {1 2 3 }. For each communicating source–destination pair ( ) C × C
assign a queue, where the data packets originating in node and destined to node
are queued up while waiting to be transmitted. The queues here are labeled by the
source ( ) and destination ( ) nodes which they correspond to.

Assume tree-based routing, which means that internal conflicts in the network
are avoided by scheduling only at the source and destination nodes. For each source–
destination pair ( ) assume that there is a fixed, known propagation delay for
sending a data packet from node to . Hence, a packet sent at time from to will
arrive at its destination at time + . Assume for simplicity in the exposition that
the propagation delay is an integer multiple of time slots.

Because of the different propagation delay values and the single laser and re-
ceiver at each node, the service configurations must satisfy the interleaving propertyX

( ) 1
X

( ) 1 (3.11)

for all times slots .
Putting this in terms of the down time requirement of this chapter, one way to

satisfy the propagation delays is to ensure

1 2
= max{( 0 ) : 1 = 1 2

0 = 1 for some 0} (3.12)

and use = max
1 2 M{ 1 2

} as the common delay.
It turns out to be sufficient to consider modes without conflicts at the sender or

receiver, that is modes with service vector satisfying
P

1
P

1, a subset of those satisfying (3.11).
The simple-batch policy in these networks turns out to be easily found using the

Birkhoff–von Neumann decomposition [11], and the minimum schedule time is seen
to be the maximum sending or receiving node demand. That is,

= max max
X

max
X

+ (3.13)

This example of scheduling for TWIN is interesting since it utilizes the idea of
a network being a meta-switch. Simpler examples of delays in switches also occur
in large-scale modern routers, where physical connections need to be reconfigured
under high data rates.

3.5 Throughput Maximization via Adaptive Batch Schedules

Here we outline the proof of throughput maximization for adaptive batch schedules;
we both ( ) identify conditions on which a static batch scheme leads to rate stability
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and ( ) show that the simple-batch policy satisfies those conditions. A full proof of
this result appears in [12], and we sketch the main points here.

Recall from (3.6) that it is sufficient for rate stability to show lim ( ) =
0, so this is the object of the stability proof. First we identify the conditions for a
service policy { ( )} =1 operating under ABS to induce rate stability. The properties
are conditions on the static batch schedule that is used to schedule packets for
transmission within each individual batch. We then show that the simple-batch policy
satisfies those conditions.

Since the demand ( ) of the Nth batch is comprised of the packets that arrive
in the time interval [ 1+1 ], it follows that ( ) =

P
= 1+1

( ). This
demand will be cleared by at time +1 = + ( ( )), thus the choice of
the static schedule is the key to guaranteeing stability.

Here we outline the key steps of the proof the ABS leads to maximal throughput.
A rigorous proof requires the consideration of cases where the limits are not well
defined. In that case, one must consider subsequences of batches on which extreme
limits are found. For more details, see [9, 12].

It turns out that the following condition on batch lengths is sufficient for rate
stability:

lim
1
= 0 (3.14)

That is, (3.14) implies (3.6), so implies rate stability.
Outline of justification for (3.14)
Note that (3.14) implies lim 1 = 1. Further, due to the structure of each
batch, ( ) =

P
= 1+1

( ). Therefore, since { } =1 is an increasing and
unbounded sequence,

lim ( ) = lim
= 1+1

( )

= lim =1 ( )
lim

1
=1 ( )

1
· 1

= 1
= 0

(3.15)

where the above limit calculations hold for each individual component of the vectors.
This implies 3 that lim ( ) = 0, which is sufficient for rate stability by (3.6).
3 Given any time slot {1 2 3 }, let fall in the ( )th batch interval, that is, ( )

( )+1. Consider the packets backlogged in the switch at time slot . Each packet is
included in one either ( ( )) or ( ( )+1). Therefore,

lim ( ) lim
( ( ))+ ( ( )+1)

lim
( ( ))

( )
+ lim

( ( )+1)

( )+1
· ( )+1

( )

0 + 0 1
= 0

(3.16)
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A property of , which is equivalent to (3.14) is

lim
+1

1
1 (3.17)

as long as each batch includes at most a bounded down time of .
In other words, the length of a batch cannot grow linearly in time. Growing

batches would indicate that the backlog in the queues was growing, since there is
a direct relationship between batch length and initial workload.

To see this, we argue by contradiction4, supposing that (3.17) holds and lim
1 = 0.

Note that 1 1 .

= lim 1

= lim 1

1 2

1 2

1

1

1 (1 )
(3.18)

This is a contradiction, and completes the argument. Hence (3.17) establishes
conditions on the static batch which lead to maximum throughput, and it remains to
construct the static bach policies which ensure that (3.17) is satisfied.

This can easily be shown for the simple-batch policy we have introduced. Notic-

ing that lim = 1+1
( )

1
= , we have

lim +1

1
= lim ( ( ))

1

= lim
( = 1+1

( ))

1

= lim (( 1) )

1

lim 1+

1

= 1

(3.19)

This implies (3.17) and hence rate stability is established.

3.6 Summary

We have outlined scheduling policies to guarantee maximal throughput in packet
switching networks where delays are significant. The increasing data speeds in net-
works make it unrealistic to utilize scheduling algorithms that allocate switch modes
and reconfigure physical devices at the same rate that data is arriving at each of the
switch ports, especially when we consider applications such as the meta-switch net-
work model.
4 Again, we assume that all limits are well-defined. If this is not the case, one can take
lim sup subsequences, as seen in [9, 12]
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Adaptive batch scheduling algorithms mitigate the natural disadvantages of fixed
batch algorithms, particularly their responsiveness to workload fluctuations and the
ability to guarantee maximal throughput without prior knowledge of the arrival dy-
namics. ABS require the solving of a simple linear program at the beginning of each
batch.
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In this chapter, we discuss the key ideas underlying some recent developments in
packet switching. They concern algorithms for scheduling packets through switch-
ing fabrics, primarily to maximize throughput and support differentiated quality of
service.

We first develop a model capturing the packet queueing and scheduling dynamics
of the switch in a ‘vectorized’ framework, which allows for the rich geometry of the
switching problem to emerge. We then present a class of algorithms that dynamically
schedule packets for transfer through the switching fabric, based on which conic
space the packet backlog vector resides in. Appropriate construction of the cones
leads to maximum throughput. Cone algorithms subsume the well known ‘maxi-
mum weight matching’ algorithms for packet switching as a special case. We discuss
various aspects of cone algorithms including robustness, scalability, throughput and
quality of service support.

4.1 Introduction

Packet switching is a basic technology of the Internet core. Scheduling packets to
be transferred from switch input ports to output ones, by dynamically selecting the
input–output port connectivity pattern of the switching fabric, is a key function of
packet switches. Packet scheduling algorithms have recently attracted much attention
in high-performance/speed switching [1–6]. In this chapter, we discuss some key
ideas and results related to recent developments in this field.

At an appropriate level of operational abstraction, we can view a packet switch
as a connector between incoming and outgoing network links. Packets arrive at input
ports and are routed to the desired output ports via the switch interconnection fabric.
Arriving packets are buffered (in general) at input ports to handle transfer resource
contention in the switch fabric.

The simplest 1-by-2 switch of Figure 4.1 has a single input line/port that can
be connected to either of two output lines/ports. A more complicated 2-by-2 switch
is shown in Figure 4.2 and a general -by- switch in Figure 4.3. It has input
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Figure 4.1. The simplest 1-by-2 switch, having a single input and two output lines. At each
time slot, it can be configured to connect the incoming line to either of the two outgoing lines.

Figure 4.2. A simple 2-by-2 switch with two input and two output ports. At any time slot, each
input port is connected to a single output port, either 1-to-1 and 2-to-2 or 1-to-2 and 2-to-1.

ports connecting to output ports through the switch fabric, for example, a cross-
bar. Each output port connects to exactly one input port, and so there are various
interconnection modes, corresponding to the input–output port matchings.

The decision of which output port each incoming packet is destined for is as-
sumed to be predetermined in this discussion. This could be according to a prede-
fined path the packet takes through a network, or independently made by a separate
routing algorithm. We are interested in how to dynamically configure the connectiv-
ity pattern/mode of the switch given incoming packets desiring to reach given output
ports.

There are several variations of the core switching abstraction discussed above,
including multicast (replication of incoming packets at many output ports), multi-
class (differentiating between various packet classes, e.g. voice, video, data, etc.),
with speedup (the switch fabric is of higher rate than the lines), etc.

An important issue in switches is the potential head-of-line blocking. If pack-
ets destined for distinct output ports are queued up in the same input buffer and
processed in a FIFO manner, then a packet at the head of the FIFO line can block
service to other packets behind it, reducing the overall switch throughput [7]. This
can be overcome by using virtual output queues (VOQ), as illustrated for a 2-by-2
switch in Figure 4.4. Instead of having one buffer for each input port, the input port
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Figure 4.3. An -by- switch connecting each input port to exactly one output port. Since
each port can have exactly one connection, the set of possible modes for the switch corre-
sponds to the matchings of input and output ports.

Figure 4.4. To avoid head-of-line blocking, each input–output pair has its own input queue or
virtual output queue (VOQ)

buffer is separated into parallel queues, one for each output port. Thus there is a
queue for each input–output pair.

The concept of virtual output queues can be generalized further. For general
switches, we consider a separate queue for each unique traffic type. For example,
if arriving packets belong to different classes, we use a separate queue per class. If
some packets are to be multicast to some output ports, then they are queued up in
a separate buffer. This generalized form of a virtual output queue avoids potential
head-of-line blocking effects, since every packet in each one queue is of identical
type.

Several important issues emerge when one considers the control of packet flows
through switches, including packet scheduling to maximize switch throughput and
provide quality of service to traffic flows. We focus on such issues in this chapter.

In Section 4.2 we develop a general switching model. The issues of switch capac-
ity and throughput are discussed in Section 4.3. A key family of algorithms, called
Projective Cone Scheduling (PCS) algorithms, is presented in Section 4.4. They max-
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Figure 4.5. The general switch model is illustrated above. Arriving packets/cells are stored in
(parallel) queues. There is a finite set of available service modes to choose from. Each mode
corresponds to a combination of cells ( from each queue ) served/transferred in a time slot.

imize the switch throughput. A key extension, called delayed PCS, is also discussed.
In Section 4.5, complexity and scalability issues are discussed and two other classes
of scalable packet scheduling algorithms, called approximate PCS and local PCS
correspondingly, are presented. They also maximize the switch throughput. The em-
phasis is on presenting the key ideas and using ‘geometric’ intuition as much as
possible to illuminate the operational subtleties of the algorithms.

4.2 Backlog Dynamics of Packet Switches

We view the switch as a controlled queueing system. The general model is illustrated
in Figure 4.5, having parallel queues and switching/service modes to select
from. The queues are labeled by Q = {1 2 } and the modes by M =
{1 2 }. Each queue buffers a type/class of packets. Time is divided into equal
length time slots (arbitrarily small), labeled by = {0 1 2 }. For simplicity, we
assume that a data packet can be divided into workload units called cells (arbitrarily
small). Each switching mode M corresponds to a service vector

= ( 1 2 ) (4.1)

where 0 is the number of cells that can be served/removed from queue in
a time slot, when the system operates under mode . For example, for three queues
= 3, the service mode (1 0 5) refers to serving 1 cell from queue 1, 0 cells from 2,

and 5 cells from 3, in a time slot when this mode is used. For standard crossbar packet
switches, each input port may be connected to at most one output port and transfer
one cell in a time slot, so the service vectors have only 0/1 entries (see Figure 4.6).
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Figure 4.6. A simple example of a 2-by-2 switch and its two connectivity patterns (top row).
There are 4 queues, one for each input–output port combination and two 4-dimensional 0/1
service vectors (lower row) corresponding to the connectivity patterns.

We assume that the set of service vectors is complete, that is, any projection sub-
vector (with any entries set to zero) of a service vector is also an available service
vector. Hence, when some queues become empty and naturally cease receiving ser-
vice, the resulting effective service vector is a feasible one. In particular, the zero
service is feasible. Note that, if an incomplete service set is given, we can naturally
complete it by adding all projection sub-vectors of the initial ones.

Arriving cells are buffered immediately in their respective queues, and served in
a first-in-first-out (FIFO) manner within each queue (actually, FIFO is not essential
for the following results, but is used as a natural default queueing discipline). Let
( ) be the number of cells arriving at queue in time slot . The arrival vector in

time slot is
( ) = ( 1( ) 2( ) ( ) ( )) (4.2)

The backlog vector ( ) of the queueing system at time is

( ) = ( 1( ) 2( ) ( ) ( )) (4.3)

where ( ) is the number of cells (workload) waiting in queue Q at time . For
any backlog vector , the service modes allowable should be only those that could
remove at most the number of cells residing at each queue, that is,

M( ) = { M : } (4.4)

(where the vector inequality is considered componentwise). This makes sure that no
allowable service vector will remove more cells than those available in a queue at
each time slot.
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Figure 4.7. The evolution of the backlog ( ) according to Equation (4.6). ( 1) is the
arrival vector and ( 1) the service vector under our control.

We control the queueing system by choosing the service mode ( ) of the system
at time , that is, its service vector

( ) = ( 1( ) 2( ) ( ) ( )) = ( ) (4.5)

Given the mode/service control ( ) the backlog state evolves (see Figure 4.7) ac-
cording to the equation

( ) = ( 1) + ( 1) ( 1)

= (0) +
P 1

=0 ( )
P 1

=0 ( )
(4.6)

for {1 2 }, where (0) is the initial backlog. The service is store-and-forward
(although cut-through service can easily be accommodated by amending the evolu-
tion equation).

4.3 Switch Throughput and Rate Stability

To address the issue of what is the maximum load that the switch can handle, and
under which mode control or cell scheduling policy, we first need to define precisely
the concepts of switch load, stability and capacity.

We make the natural assumptions that the long-term average cell load for each
Q is well-defined, positive and finite, that is,

lim

P 1
=0 ( )

= (0 ) (4.7)

and the load is bounded per slot or ( ) max for all and some arbitrarily fixed
positive ceiling max (for example, corresponding to the port line rate). The switch
load vector is

= ( 1 2 ) (4.8)
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Figure 4.8. The stability region of a system of two queues and five service vectors
{ 1 2 3 4 5}. If the load vector is within the shaded region R, then there exists
a convex combination of service modes which would ensure rate stability by serving at least
the arrival rate to each queue.

No further assumptions are imposed on traffic trace statistics, so traces to various
queues can be highly interdependent indeed.

Note that the long-term average cell departure rate from each queue is simply
(when the limit exists)

lim

P 1
=0 ( )

= (4.9)

when the service vector control or packet scheduling policy ( ) is used. One desires
and expects that under normal operation cell flow conservation is maintained through
the switch, that is, the average cell departure rate equals the average arrival rate or

= lim

P
=0 ( )

1
= lim

P 1
=0 ( )

= (4.10)

for each Q. In that case, we call the queueing system rate stable, in the sense
that there is input–output flow equilibrium, as opposed to a flow deficit at the output.
Note that rate stability (4.10) is equivalent to

lim
( )

= 0 (4.11)

due to (4.6) and (4.7), that is, queue backlogs do not grow linearly over time.
The set of load vectors for which the switch is rate stable (4.10) for some

service control or scheduling policy ( ) is known as the stability region R. A rate
vector is called allowable if it is within the stability region. It turns out that the
stability region is
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R =
(

:
X
=1

for some 0
X
=1

= 1

)
(4.12)

that is, R if it is dominated by some convex combination of the service vectors
(see Figure 4.8). Hence, if known in advance, a scheduling policy which uses each

for a fraction of time will ensure that (4.10) is satisfied and the switch is rate
stable.

It is interesting to note that if R, then the switch is unstable3 under any
scheduling policy, that is, lim ( ) 6= 0 or (equivalently) lim sup ( )

0
for some queue Q. The question then becomes under which ‘smart’ scheduling
policies ( ) the switch can remain stable for all R. This is the subject of the
discussion in the next section.

Finally, it is interesting to note that we can characterize feasible load vectors
R in a ‘geometric’ manner. Specifically, if R, then for any -dimensional

real vector4 , we have
h i max

M
h i (4.13)

Thus, in any direction , the projection of a feasible load vector is dominated by the
projection of some service vector. This is a property that proves useful later.

4.4 Cone Algorithms for Packet Scheduling

One intuitively expects a good scheduling algorithm to maximize the switch through-
put by adapting to traffic fluctuations and handling excessive queue backlogs for the
maximum possible mean traffic load, even if the latter is not a priori known or grad-
ually shifts over time.

3 A formal proof of that fact can be found in [6, 8]. The following heuristic arguments, how-
ever, reveal the key intuition. Arguing by contradiction, suppose that lim ( ) =
0. Assuming we use a scheduling policy ( ), from (4.6) we get ( ) = (0) +

1
=0 ( ) 1

=0 =1 1{ ( )= } Dividing the inequality terms through by
, taking the limit as , using (4.7) and rearranging the terms, we get

=1 lim 1 1
=0 1{ ( )= } Setting = lim 1 1

=0 1{ ( )= }, it
follows that =1 with =1 = 1, which contradicts the assertion that

R according to (4.12). We have ‘loosely’ assumed in the heuristic arguments above
that the limits = lim 1 1

=0 1{ ( )= } exist. This may not be the case and so
one has to work with subsequences on which these limits do exist in the formal proof.

4 A formal proof of this property can be found in [5,8,9]. A brief sketch of the proof, however,
is given below. If R, then =1 ; hence, =1 for
each queue . Consider now any arbitrarily fixed real vector = ( 1 2 ).
We have =1 1{ 0} for each queue, since 0 and 0.
Writing ( ) = ( 1{ 0} Q), we see that h i =1 h ( ) i
max M h i where the right inequality is due to the assumed completeness of the
service vector set.
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Figure 4.9. The cone geometry of the PCS algorithm. In this example, the system has two
queues and three service vectors 1 = (4 0) 2 = (3 2) 3 = (0 3) (and their projection
sub-vectors for completion). Note that 1 focuses on queue 1 and 3 on queue 2, while 2

serves both in a more balanced manner. The first graph shows the service vectors available.
The second graph shows the service cones C when the identity matrix B = I is used. For
example, if the workload is within the cone C1 then service mode 1 is used. Whenever the
workload drifts into a new cone, the new service mode is selected.

4.4.1 Projective Cone Scheduling (PCS)

We now discuss a rich family of high-performance scheduling algorithms, which are
called Projective Cone Scheduling (PCS) algorithms. They are projective because
at any time they select the service vector with maximum projection h B i
onto the (twisted) backlog vector B , for a some fixed twisting × matrix B.
Specifically, when the backlog is , the PCS algorithm selects and activates a service
mode such that D

B
E
= max

M( )
h B i (4.14)

given a fixed matrix B (with properties discussed below). That is, when the backlog
is , the PCS algorithm selects a mode in the set

M ( ) =

½
M( ) :

D
B

E
= max

M( )
h B i

¾
(4.15)

of all modes whose service vectors have maximal projection on B . There may be
more than one such mode, in which case any one is selected arbitrarily.

The family of PCS algorithms has a nice geometric interpretation (see Figure
4.9) which justifies the name cone algorithms. For each service mode M, let
C be the set of backlog vectors for which would be chosen under the PCS
algorithm; that is,

C = { : M ( )} (4.16)

This is the set of backlogs for which h B i is maximized for or the set
of backlogs for which the PCS algorithm chooses the service vector . Note that
C is a geometric cone. Indeed, if C then C for any positive scalar
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(since h B i being maximal implies that h B i is maximal). In view of
the above, we can now define the PCS algorithm as

PCS : when C (4.17)

The cones {C M} form a partition of the backlog space and the system
backlog evolves by drifting in and across these cones as packets arrive and leave after
being served. Illustrative examples of the PCS cone geometry are shown on Figures
4.10 and 4.11.

Note that PCS algorithms require no knowledge of the load vector . They di-
rectly select the service mode based on the current workload , depending on
which cone C the latter belongs to. By selecting and fixing B we can generate
a very rich family of PCS algorithms. Which of those, however, achieve maximal
throughput? We address this issue below.

It turns out that if B is (1) positive definite, (2) symmetric and (3) has negative
or zero off-diagonal elements, then the corresponding PCS algorithm maximizes the
switch throughput; that is,

lim
( )

= 0 for all R (4.18)

or rate stability and flow conservation is maintained for all traffic loads in R. The
identified properties of B imply that the diagonal elements of B must be positive.
Such matrices are known as Stieltjes matrices [10]. The formal proof of (4.18) can
be found in [11], but a heuristic one revealing the key intuition is provided below.

Let us consider some special – yet interesting – cases, emerging whenB = I (the
identity matrix). First, when the switch is -by-1 (having parallel queues and a
single server that can be allocated to any queue to provide service at rate 1), then PCS
is equivalent to the Largest-Queue-First scheduling discipline. That is, PCS allocates
the server to the queue with the largest current backlog. Second, when the switch is a
crossbar -by- one (with 0/1 service vectors), then PCS with B = I is equivalent
to the well known Maximum-Weight-Matching (MWM) algorithm [1].

4.4.2 Relaxations, Generalizations, and Delayed PCS (D-PCS)

There is an interesting relaxation of the PCS algorithm, which allows for generalizing
the throughput maximization result to a far broader class of systems, reflecting the
high robustness of the core PCS algorithm. This is called Delayed PCS (D-PCS) and
is explained below.

Recall first that the basic PCS scheme selects mode immediately when
C . To define D-PCS, we relax this requirement, by allowing an arbitrarily fixed
time-lag in selecting a mode after the backlog enters cone C and drifts in
it. That is, if ( ) enters cone C at some time and stays drifting in it for more
than time slots, then D-PCS is guaranteed to select mode after at most slots
and keep using it as long as ( ) stays in C . Formally,

if ( ) C for { +1 + } then use for + (4.19)
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Figure 4.10. The PCS cone geometry for a system of two queues and three service vectors
1 = (4 0) 2 = (3 2) 3 = (0 3). Note that 1 serves queue 1 and 3 queue 2 only,

while 2 serves both in a somewhat balanced manner. The graphs show the cones C when

each of the matrices B1 =
1 0
0 1

B2 =
2 0
0 1

and B3 =
1 0 5
0 5 1

is used. For exam-

ple, if C1 then service mode 1 is selected by PCS. Changing the top diagonal element
from 1 to 2 results in shrinking cone C3 and expanding cone C1, giving higher ‘priority’ to
queue 1 and using 1 over a larger space of workloads. In the third plot, where negative off-
diagonal elements are introduced, the middle cone C2 shrinks. This corresponds to ‘coupling’
the two queues tighter and pulling the two workloads closer together by trying to load-balance
them.

The time-lag/delay in selecting the right mode is fixed, but arbitrary; varying it
generates a family of D-PCS algorithms.

In summary, D-PCS will track the mode choices of PCS with a time-lag, selecting
the same (right) mode when the backlog has remained within a single cone for at least

time slots, for some fixed . The modes chosen by D-PCS in the first time slots
after entering a cone can be arbitrary.

This relaxation allows us to consider a number of important generalizations to the
switch structure. These include: (1) the backlog information provide to the scheduler
is outdated and delayed; (2) packets cannot be divided into individual cells, but have
to be processed non-preemptively; (3) the scheduling decisions (computation of )
can only be done periodically and not at every time slot; (4) only subsets (neigh-
borhoods) of service modes, rather than the whole set M( ), can be used at each
time (see local-PCS later), etc. All the above generalizations allow for applying the
D-PCS algorithm, tracking the PCS mode choices with a time lag, caused by a delay
in information gathering or due to limited choices at each time slot.

As with PCS, it turns out that if B is (1) positive definite, (2) symmetric and (3)
has negative or zero off-diagonal elements, then the corresponding D-PCS algorithm
maximizes the switch throughput; that is,

lim
( )

= 0 for all (4.20)

R (4.21)

or rate stability and flow conservation is maintained for all traffic loads in R. The
formal proof of (4.20) can be found in [11], but a heuristic sketch of it is provided
below.
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Figure 4.11. The PCS cone geometry for a system of three queues and four service vec-
tors 1 = (9 0 0) 2 = (0 8 0) 3 = (0 0 8) 4 = (3 4 3). The cones
are visualized by considering their intersection locus with the plane defined by the points
(1 0 0) (0 1 0) (0 0 1) or by the equation (1 1 1) = 1. The graphs show the C ser-

vice cones when the matrices B1 =
1 0 0
0 1 0
0 0 1

, B2 =
1 0 0
0 2 0
0 0 1

, and B3 =
1 0 5 0
0 5 1 0
0 0 1

are used correspondingly. For example, if C1 then 1 is used. In the second figure, the
weight of the second queue being 2 (compared to 1 for the others), increases the service prior-
ity of queue 2 and enlarges the cone C2 by pushing away its boundaries to neighboring cones
(and squeezing the latter). The third plot has negative off-diagonal elements causing 1 and
2 to counter each other and become more tightly coupled or entangled.

4.4.3 Argument Why PCS and D-PCS Maximize Throughput

It is interesting to see why PCS and D-PCS maximize the switch throughput, when
the fixed matrix B is positive definite, symmetric, and has negative or zero off-
diagonal elements, by forcing

lim
( )

= 0 (4.22)
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Figure 4.12. The backlog drifting in and across the mode cones partitioning the backlog space,
eventually ‘explodes’ along the direction , as considered in Section 4.4.3

for all R. We highlight the key intuition below, using heuristic arguments to
provide a sketch of the proof which can be found in [5, 9, 11].

Arguing by contradiction, suppose (loosely) that lim ( ) = 0 (compo-
nentwise) for some R. Let be in the cone where the mode and service
vector are used by PCS and (eventually) D-PCS (see Figure 4.12). Therefore,
there is a finite time after which both algorithms use consistently. Hence,
( ) = ( ) +

P 1
= ( ( ) ( )) =

P 1
= ( ) ( ) . Dividing by

and letting , we get lim ( ) = or = . Projecting on
B , we get

h B i = h B i
D

B
E
= h B i max

M
h B i (4.23)

recalling that should have maximal projection on B since C . From
(4.23), setting = B , the right-hand side must be negative or zero, hence,
h B i 0. This implies that = 0, since B is positive definite, contradicting
the assertion that 0 and establishing contradiction.

The formal proof is a bit more subtle. Indeed, one has to consider the convergence
( ) on convergent subsequences, since the direct limit may not exist. Moreover,

some components of may be 0, although 6= 0 overall. To clinch the full proof
one must then invoke the three aforementioned properties ofB.

Finally, it is interesting to note that the service vectors drain the backlog by at-
tracting it towards the cone boundaries. This is clearly demonstrated in the example
shown in Figure 4.13.

4.4.4 Quality of Service and Load Balancing

The choice of the fixed matrix B in the PCS and D-PCS algorithms has implica-
tions for quality of service received by each queue and load balancing across various
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Figure 4.13. Backlog draining under PCS for a simple example of two queues, which drain
from different initial backlogs, while no arrivals are allowed. The identity matrix B = I is
used and the set of service vectors is varied over the four plots. Each plot shows how the
two queues drain under PCS from five different initial workload levels. The upper-left plot
has two service vectors 1 = (1 0) and 2 = (0 1) available. The upper-right plot has
1 = (2 0) and 2 = (0 1). The lower-left plot has three service vectors to select from,
1 = (1 0) 2 = (0 1) and 3 = (0 75 0 75). The lower-right plot has the vectors 1 =
(1 25 0) 2 = (0 1) and 3 = (0 75 0 75). As the set of service vectors changes, the drain
trajectories change too. They are always attracted, however, towards the cone boundaries and
follow them after hitting them initially.

queues. The matrix introduces several design degrees of freedom, providing 2 tun-
able parameters.

We can view B = { } in terms of the transformation it applies to the cone
space, as illustrated in Figures 4.9, 4.10 and 4.11. WhenB is increased (while other
elements remain constant), queue gains service priority and sees a lower average
backlog. On the other hand, whenB 0 with 6= , the relative priority of queue

decreases, as the workload of queue increases. Service attention shifts toward
queue , as grows and away as grows.

Overall, PCS dynamically adapts to backlogs and load balances across the vari-
ous queues. Indeed, as the backlog of a queue increases excessively, PCS shifts at-
tention to it and selects a service vector that drains it faster, potentially at the expense
of other less congested queues which drain slower.
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4.5 Complexity in Cone Schedules – Scalable PCS Algorithms

The computational complexity of finding the maximum h B i value over
M( ) in real-time (in each time slot) can be considerable. There is typically a huge
number of service modes in M( ), which makes the realtime computation of the
maximum prohibitive. For example, a switch with input and output ports ( =
2 virtual output queues) has service vectors corresponding to input–output port

matchings, whose number grows factorially in .
We outline two families of throughput-maximizing PCS relaxations to counter

the challenge of complexity. These are known as approximate PCS and local PCS al-
gorithms. The former reduce the regularity or accuracy with which h B i needs
to be calculated and maximized, while the latter reduce the mode set over which max-
imization is considered at each time slot [5]. They are both delayed PCS algorithms
(see Section 4.4.2) and, hence, achieve maximal throughput.

4.5.1 Approximate PCS

In Section 4.4.2 it was noted that the maximization ofmax M( ) h B i need
not be under exactly up to date information. One natural option could be for the
maximum to only be calculated every with outdate backlog information, leading
to a D-PCS algorithm.

A nice alternative is to choose at every time slot a near-optimal service vector
in the sense thatD

B
E

h B i
D

B
E

(4.24)

where is the actual one of maximal projection on B and is an arbitrarily
fixed error term or slack. This near-optimal may be computed significantly faster
than the optimal one and we can establish maximal throughput for this approximate
PCS too, via a D-PCS type argument [8].

Figure 4.14 shows the performance of a queuing system under two different ap-
proximations described above, as well as the standard PCS. As expected, the latter
outperforms both approximate PCS algorithms in terms of backlog; all three, how-
ever, can achieve maximal throughput.

4.5.2 Local PCS

In addition to the frequency of calculations, the number of modes under consider-
ation at each time slot increases the complexity. The PCS cone geometry leads to
intuition which helps alleviate this complexity. It is presented in Figure 4.15 for a
simple two-queue example.

Suppose that at time 1 the backlog ( 1) is in the cone C . During time
slot 1, packets arrive to the various system queues, which cause the workload at
the start of time to jump to 0 = + ( 1) which belongs to the cone
C 0

and the service vector used at 0 is 0. Given assumed upper bounds of
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Figure 4.14. The same arrival trace applied to the same system of three queues under (1)
standard PCS (solid line), (2) approximate PCS with delay of 10 slots (dotted line), and (3)
approximate PCS with error/slack of 10 (dashed line). There are three queues and three service
modes (each serving one queue). The total backlog over all three queues is shown in the figure
andB = I.

Figure 4.15. This figure shows the PCS cone structure for a simple example of two queues and
four service cones. The jump in the backlog in a slot is within the fixed displacement box
( ) of possible extreme values for ( ). As the workload increases, the displacement

box ( ) eventually intersects only cones that are neighbors to that where resides.
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arrivals per slot and the maximum possible departures per slot, the backlog 0 has
to be in a fixed ‘displacement box’ ( ) around . Observe now the following:

1. If | | is small, then 0 is in ( ) which intersects lots of cones C 0
that are

reachable from .
2. As | | gets larger, then 0 is in ( ) which intersects fewer and fewer cones.

Eventually, for large enough , ( ) will intersect at most neighboring cones
of C . Thus, it suffices to compute h B 0i and obtain the maximum over
0 for which C 0

is adjacent to C . This reduces computational complexity
substantially.

This provides the key intuition for designing local PCS algorithms, because the
concept of adjacent cones maps directly to that of local search in the space of service
modesM, as articulated below.

Define two service combinations and
0

to be neighboring or adjacent if
their corresponding cones C and C 0

are adjacent, in the sense that they share a
non-trivial ( 1)-dimensional common boundary. Let N be the set of modes
whose corresponding service vectors are neighbors to .

Define now the Local PCS algorithm inductively, as follows: if the service mode
was used in the previous time slot and the backlog is 0 in the current time slot,

then select a service mode 0 in the current time slot such that

h B 0i = max
N
h B 0i (4.25)

for a fixed matrix B. This is quite similar to the definition of the standard PCS,
except that the maximization is done only over the neighbors N of the previously
used service mode , as opposed to all modes inM( ) that would be standard. The
set N typically has far fewer modes than M( ), hence the substantial reduction
in complexity.

There is an interesting graph representation of the service mode set M, which
allows us to visualize the local PCS algorithm, as illustrated in Figure 4.16. Each
service mode corresponds to a distinct node of this graph, and an edge between
two nodes and 0 exists if they are neighboring modes (i.e. C and C 0

are
adjacent cones). Given that the local PCS algorithm is currently using mode , it
only needs to compute h B 0i on the neighbors 0 of node on this graph and
move to the node where this inner product is maximized. The neighbors 0 could be
stored in a lookup table or some graph data structure.

The local PCS algorithm, as described in (4.25), admits several extensions out-
lined below. (1) Instead of searching immediate neighbors of the previous mode, con-
sider up to th-degree neighbors (for example, 2nd-degree neighbors are separated
by two edges in the graph shown in Figure 4.16). (2) Search neighbors until one is
found which just improves h B 0i rather than finding the maximizing neighbor.
(3) Consider just one (or generally ) new mode(s) in each time slot and use it if
it provides improvement, in such a way that every mode is considered within some
bounded number of time slots. For example, do round-robin ( mod ) + 1 for an
ordering { } =1 of the service modes.
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Figure 4.16. The local PCS algorithm can be visualized graphically. The first figure shows
the PCS cone structure. The second figure shows the projection of the workload space onto a
plane (such as P in the first graph). In the third figure, the mode graph is shown. Each node
corresponds to a unique service mode (or service vector ). Two nodes are joined by an
edge if the cones corresponding to their service modes/vectors are adjacent. Given that the
local PCS algorithm is currently using mode , it only needs to compute

0
B 0 on

the neighbors 0 of node on this graph and move to the node where this inner product is
maximized.

All the previous algorithms, both approximate and local PCS versions, are actu-
ally delayed PCS algorithms. Therefore, if the matrix B is (1) positive definite, (2)
symmetric, and (3) has negative or zero off-diagonal elements, then each of these
algorithms will maximize the throughput of the system. The more ‘relaxed’ an al-
gorithm is, the lower its implementation complexity will be, but also the worse it is
expected to perform in terms of average queue backlogs.

4.6 Final Remarks

We have discussed some recent developments in packet switching algorithms having
maximal throughput. Based on some simple ideas, we have developed a suite of
algorithms, starting from the basic Projective Cone Scheduling one and considering
a number of key relaxations that do not compromise the throughput. They lower,
however, the implementation complexity, possibly at the expense of higher average
backlogs.
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How should one choose the matrix B, so as to affect the quality of service re-
ceived by each queue? Despite the fact we have demonstrated that this is doable, we
have not provided a systematic way of selecting the matrix. This is the object of our
current research on switching systems. Several challenges remain to be addressed in
this direction in order to be able to systematically design the matrix B to satisfy a
given set of quality of service constraints.
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This chapter introduces the background and motivation for, as well as the engineering
challenges related to the notion of implementing a switch fabric on silicon. A review
of prior work supporting the concept of fabric on a chip is provided leading to a
consideration of the core challenge of designing scalable, high-performance memory
management algorithms that can support next-generation services while facilitating
the consolidation of various switching functions on a single chip. The methodology
presented is illustrated using several practical as well as academic examples.

5.1 Introduction

Recent years have witnessed unprecedented advances in the design, verification for-
malism [1], and deployment of high-capacity, high-performance packet-switching
fabrics. Such fabrics are commonly employed as the fundamental building blocks in
data-networking platforms that span a wide variety of application spaces. The mar-
ket segment for which a product was designed predominantly governs the capacity
of modern routers and switches. Core (or backbone) Internet routers, for example,
are able to support multiple terabits per second [2], while systems built for metropol-
itan area networks (MANs) typically carry hundreds of gigabits per second (Gbps).
Local area networks, representing the lower end of the switch/router market, have a
switching fabric that supports up to tens of Gbps. However, switching fabrics are not
limited to Internet transport equipment. Storage area networks (SANs), for example,
often necessitate large packet switching engines to allow vast amounts of data to tra-
verse a fabric, whereby storage data segments (i.e. blocks) flow from storage devices
to servers and users, and vice versa.

During the late 1990s, many believed that the growth in Internet traffic would
increase at a rate that would require significant upgrades in switching infrastructure
as often as every 18 months. However, despite the increasing growth in user traffic
(approximated to double every 12 months), the pragmatic requirements of backbone
switches and routers are somewhat more modest. Nevertheless, the large number
of components in switch fabrics, which drive such large systems, renders the latter
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highly complex to design, test and maintain. Thus, in an effort to alleviate some of
the key difficulties in designing large switching fabrics, the concept of Fabric on a
Chip (FoC) is introduced. In view of realistic technological limitations, it should be
noted that FoC solutions would not be designed for core/backbone routers. Rather,
the target application space for such products would be where hundreds of Gbps and
below are required, e.g. in MAN, high-end LAN, and SAN, among others.

Taking advantage of recent advances in integrated circuit technologies, the goal
of FoC architectures is to enable the consolidation of as many core switching func-
tions as possible on a single chip. By achieving a high level of integration, it is argued
that much larger systems can be readily realized. Moreover, the resulting designs
will consume significantly fewer resources than the traditional approach. Accord-
ingly, this chapter focuses on the topic of on-chip output-queued switch emulation.
The memory-management problem is introduced, to which solutions using a novel
architecture and algorithms are offered and discussed in detail.

5.1.1 Benefits of the Fabric-on-a-Chip Approach

There are numerous benefits to considering the notion of consolidating switching
fabric functions on a chip. The first is the ability to reduce system physical compo-
nents. By reducing the number of chips in the system, we directly obtain a reduction
in size and design complexity, resulting in simplified board layouts and mechanical
considerations. Such improvements in the design process are far from negligible, be-
cause a corollary to simplified design is shorter design cycles. As discussed earlier,
reduction of power requirements – a crucial pragmatic aspect of any switch/router –
is obtained due, primarily, to the reduction in high-speed serial transceivers in use.
The proposed approach replaces chip-to-chip communication with on-chip commu-
nication, which has considerably lower power-consumption characteristics.

When considering the design of systems with capacities of hundreds of Gbps
and beyond, other engineering aspects play a key role in guaranteeing successful
deployment. One such key issue is staying within a workable power budget; high-
speed serial transceivers that enable the transmission and reception of data signals
at rates of Gbps, require a great deal of power. Practical maintenance constraints
limit the amount of power that switches and routers may consume. In conventional
switch/router designs, multiple high-bandwidth data signals originating from the in-
put ports, arrive at the fabric and traverse it en route to their destination ports. Any
reduction in the number of serializer/de-serializer (SerDes) circuits utilized by the
various chips is guaranteed to directly reduce the overall system power consump-
tion. Yet another element impacting power consumption is the amount of memory
devices used.

A related advantage of FoC is higher reliability. It is generally acknowledged that
lowering the number of (independent) components in any given system increases its
reliability, since fewer components are prone to failures and thus need to be replaced.
In view of recent technical standardization efforts pertaining to packet processing
products, one may argue that FoC helps facilitate the rapid exploitation of standard
interfaces to further support the interoperability between different semiconductor
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Figure 5.1. Potential functions to be consolidated as part of the FoC framework

products used in a switch or router. Lastly, the notion of FoC is coherent with the
recent trend toward modern System on a Chip (SoC), a trend that is gaining mo-
mentum due to the inherent advantages it presents, in particular with respect to cost
reduction.

Figure 5.1 illustrates the various components of a traditional input-queued switch;
these components have the potential to be integrated on a single chip as part of the
FoC framework. Improvements in the fabrication of VLSI circuitry play a key role
as enablers for FoC. Due to advances in packaging technology, it becomes plausible
to consider that all data packets arrive at the FoC directly. This reduces the need for
virtual output queueing [3] and some output buffers associated with standard switch
architectures. Due to the ability to embed multiple megabits of dual-port SRAM on
a chip, packets can be efficiently stored and switched internally. We shall refer to
packets as being of fixed size. This is generally true for all practical switch fabric
designs, as external packets are typically segmented into fixed-size data units and
reassembled as they exit the switch.

The crosspoint switches and scheduler, key components in input-queued switches,
are avoided thereby substantially reducing chip count and power consumption. Cor-
respondingly, much of the signaling and control information that typically spans mul-
tiple chips can be carried out on chip. Finally, the switch management and monitoring
functions can be centralized since all the information is available at a single location.

5.2 Emulating an Output-queued Switch

Output-queued (OQ) switches offer several highly desirable performance character-
istics, including minimal average packet delay, controllable Quality of Service (QoS)
provisioning, and work-conservation under any admissible traffic conditions [4][5].
However, the memory bandwidth requirements of such systems is O( ), where
denotes the number of ports and the data rate of each port. The latter is derived
from the need to be able to accept (write) up to arriving packets while simulta-
neously transmitting (reading) up to departing packets. This requirement signifi-
cantly limits the scalability of OQ switches with respect to their aggregate switching
capacity. In an effort to mimic the desirable attributes of output-queued switches,
while significantly reducing the memory bandwidth requirements, distributed shared
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memory architectures, such as the parallel shared memory (PSM) switch, have re-
cently received attention [6]. In order to properly operate, the PSM switch must
have sufficient bandwidth. At the core of distributed shared memory architectures
is the memory management algorithm, which determines for each arriving packet,
the memory unit in which it will be placed. However, the complexity of such algo-
rithms found to date is O( ), where denotes the number of switch ports, thereby
inherently limiting the scalability of the scheme.

Initial work has indicated that, assuming each of the shared memory units can
perform at most one packet-read or -write operation during each time slot, a sufficient
number of memories needed to emulate a FCFS output queued switch is = 3 1
[6]. The latter can be proven by employing constraint sets analysis (also known as
the "pigeon hole" principle), summarized as follows. An arriving packet must always
be placed in a memory unit that is currently not being read from by any output port.
Since there are output ports, this first condition dictates at least memory units
are available. In addition, no arriving packet may be placed in a memory unit that
contains a packet with the same departure time. This results in additional 1
memory units representing the 1 packets having the same departure time as the
arriving packet, that may have already been placed in the memory units. Should this
condition not be satisfied, two packets will be required to simultaneously depart from
a memory unit that can only produce one packet in each time slot.

The third and last condition states that all arriving packets must be placed in
different memory units (since each memory can only perform one write operation).
By aggregating these three conditions, it is shown that at least 3 1memory units
must exist in order to guarantee FCFS output queueing emulation. Although this
limit on the number of memories is sufficient, it has not been shown to be necessary.
In fact, a tighter bound was recently found, suggesting that at least 2 25 memories
are necessary [7]. Regardless of the precise minimal number of memories used, a
key challenge relates to the practical realization of the memory management mech-
anism, i.e. the process that determines the memories in which arriving packet are
placed. Observably, the above memory-management algorithm requires iterations
to complete.

In [8][9] Prakash, Sharif, and Aziz proposed the Switch–Memory–Switch (SMS)
architecture as an abstraction of the M-series Internet core routers from Juniper. The
approach consists of statistically matching input ports to memories, based on an itera-
tive algorithm that statistically converges in ( ) time. However, in this scheme,
each iteration comprises multiple operations of selecting a single element from a bi-
nary vector. Although the nodes operate concurrently from an implementation per-
spective, these algorithms are ( 2 ) at best (assuming ( ) operations are
needed for each binary iteration as stated above). Since timing is a critical issue, the
computational complexity should directly reflect the intricacy of the digital circuitry
involved, as opposed to the high-level algorithmic perspective. It is important to note
that in comparison to previous work, in particular that which addresses the SMS ar-
chitecture, the FoC theme dictates that packet placement should be kept as simple as
possible. Therefore, no crosspoint switches are to be used since they are very difficult
to embed on chip, in particular at the high data rates considered.
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Figure 5.2. General structure governing the proposed parallel shared memory (PSM) switch
architecture. Incoming packets are placed in a set of K ( N) memory units.

In light of the above material, the work presented in this chapter is motivated
by the need for a packet-placement algorithm that is ( ) in speed and can
utilize straightforward multiplexers to switch data segments from one location to
another, as opposed to necessitating a crossbar switch. Acceptable costs, according
to the paradigm fostered here, include fixed latency and a reasonable increase in the
number of memory units used.

5.3 Packet Placement Algorithm

5.3.1 Switch Architecture

This section describes a proposed memory-management approach for PSM switches
employing a pipeline architecture, as shown in Figure 5.2. The first step is to calcu-
late the departure time of each arriving packet. Calculation of departure times is gov-
erned by the output scheduling algorithm used. The most straightforward scheduler
is the first-come-first-serve scheme, in which packets are assigned departure times in
accordance with their arrival order. To provide delay and rate guarantees, more so-
phisticated schedulers [4][5] can be referenced in order to determine the appropriate
departure time assignment algorithm.

The main contribution here lies in the fact that the placement algorithm distrib-
utes the packet-placement process, thereby gaining execution speed at the cost of a
fixed latency. In the proposed switch architecture, the memory-management algo-
rithm is implemented using a multi-stage pipeline architecture, as depicted in Figure
5.3.

The pipeline architecture consists of × cell buffering units arranged in a
square structure. Each row is associated with one of the parallel shared memory
units. Hence, the architecture requires parallel shared memories. Incoming packets
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Figure 5.3. Memory-management pipeline architecture

from input port are initially inserted into row . The underlying mechanism is that
at every time slot, packets are horizontally shifted one step to the right, with the
exception of the diagonal cells of the structure. The diagonal cells have the ability
to move vertically to another row of the same column. A cell moves vertically if any
of the following two conditions are met: (a) the memory associated with the row
in which it is currently located already contains a packet with the same departure
time; (2) there is another cell ahead of it in the same row with the same departure
time. Therefore, vertical moves are used as means of resolving memory placement
contentions. The goal of the scheme is that once a packet reaches the last column
of the pipeline, it is guaranteed to be located in a row which is associated with a
memory that does not contain any packets with the same departure time.

5.3.2 Memory-management Algorithm and Related Resources

It should be apparent that each row, with the exception of the diagonal elements, can
be considered as a simple shift register whereby packets are shifted one stage to the
right at each time step. In each stage of the pipeline a single packet assignment is at-
tempted per row. These assignment attempts are only made on the diagonal elements
of the pipeline structure, so that there can be at most one assignment per column as
well. The motivation for doing so is to isolate memory assignments, thereby reducing
the complexity of the placement mechanism.

Each row maintains a mapping that specifies pre-allocated (or reserved) departure
times of packets that have successfully passed the diagonal position. This mapping,
which is essentially a binary mask, is referred to as the row’s availability map. The
diagonal element refers to this map in order to check if its departure time is available
at that row. If it is available, the cell will horizontally shift to the right and mark
the corresponding departure time in the availability map as reserved. If it is already
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reserved by another cell, it will shift vertically down to another row where the corre-
sponding element position is empty and its departure time is not reserved.

Note that in this manner, following the first vertical jump, a cell may still have
contention with (1) packets that are ahead of it with the same departure time but
have not reached the diagonal element, or (2) packets having the same departure
time that have leaped in the same time slot to the same row. To resolve contention
originating from the first scenario mentioned, a second binary availability map called
the reservation map is maintained. Upon shifting to a new row, each cell must update
the row’s reservation map by asserting the bit corresponding to its departure time.
This allows future packets to guarantee that the row they are moving to does not
contain packets that have arrived in a previous time step with the same departure
time.

For practical reasons, both maps (the availability and reservation) cannot be un-
bounded in size. In practical switching systems, once a buffer reaches (or is close
to reaching) its limit, flow-control signaling should be provided to the sources, in-
dicating the need to either slow down or temporarily stop the flow of packets to a
certain destination. Such a mechanism is always required since instantaneous data-
traffic congestion may occur at any router or switch. In fact, even if the traffic is said
to be statistically admissible, meaning that no input or output is oversubscribed, it
may still be the case that for short periods of time a given output port, for example, is
oversubscribed. To address such scenarios, and in an effort to reduce the probability
of dropping any packets, the line cards typically host large memory spaces and traffic
is regulated through the fabric.

In order to obtain an estimate of how much memory is needed, one can refer to
the pure output-queued switch model. The approach taken is to obtain the expected
queue size for each output port, from which a good approximation of the memory
need is, in turn, obtained.

Consider an × output queue in which buffering occurs only at the output
ports. During each time slot, the switch must transfer all arriving packets into their
respective output ports. Let us first assume that arriving packet traffic is uniformly
distributed across the output ports and obeys a (memoryless) Bernoulli i.i.d. process.
Consequently, a packet arrives at a given input port with probability and equal
chance of being destined for any of the output ports, i.e. uniformly and at random.
Due to the inherent symmetry of the system, we shall analyze a single output port
(e.g. output port 1) from which we will be able to derive the behavior at all other
ports. Let denote the number of packets buffered in the output port buffer at time
. Since in each time slot, a maximum of packets may arrive to a given output port

and at most a single packet can depart, the following Markov model can be used to
portray the evolution of the output buffer:

+1 = + +1 +1 (5.1)

where [0 ] denotes the number of arrivals during time slot and [0 1]
is an indicator function representing a departure event. Provided the queue size is not
allowed to take negative values, then = 1 if and only if 0.. is clearly



www.manaraa.com

108 I. Elhanany et al.

i.i.d. (as defined above), and its distribution is given by

( = ) =

µ ¶µ ¶ ³
1

´
(5.2)

which converges to

lim
( = ) =

!
(5.3)

Moreover, since the arrival process is independent of the departure process, is
independent of .

Taking the expectation at both sides of (5.1), we consider the steady-state result
by omitting the subscript yielding the expectation expression [ ] = ( 0).
However, we are primarily interested in [ ], so we square both sides of (5.1) and
take the expectation, resulting in

[ 2] = [ 2]+ [ 2]+ ( 0)+2 [ ] 2 [ | 0] 2 [ | 0] (5.4)

Since and are independent, we obtain

[ ] =
[ 2] [ ]

2(1 [ ])
(5.5)

At this point, all that remains is to determine [ 2] and [ ]. In view of (5.3), we
assert that [ ] = and [ 2] = + 2, therefore

[ ] =
2

2(1 )
(5.6)

By multiplying the above term by , we have the total average memory con-
sumed by a pure output-queued switch. This provides us with a reasonable estimate
of the amount of memory the PSM switch is to host on chip. As an example, for a
load of 90% (i.e. = 0 9) the per-port average memory requirements are merely
4 05 packets. The same analysis method may be applied to obtain the average queue
size when bursty traffic is considered. It is widely acknowledged that real-life traffic
tends to be correlated, or bursty, on many levels [10][11].

Consider a discrete-time, two-state Markov chain generating arrivals modeled by
an ON/OFF source that alternates between the ON and OFF states. Let the parame-
ters and denote the probabilities that the Markov chain remains in states ON and
OFF, respectively. An arrival is generated for each time slot that the Markov chain
spends in the ON state. Letting denote the inter-arrival times distribution, the
probability of two consecutive arrivals occurring is identical to the probability that
following an arrival the Markov chain remains in state ON, i.e. 1 = . Similarly,
2 is the probability that following an arrival, the chain transitions to the OFF state

and then returns to the ON state. For 2, it is apparent that following a transition
from the ON state to the OFF state, there are 2 time slots during which the chain
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Figure 5.4. Average memory requirements of a FoC device

remains in the OFF state before returning to the ON state. Accordingly, we obtain
the following general expression for :

=

½
(1 ) 2 (1 )

= 1
1

(5.7)

From (5.7) the average burst size, = (1 ) 1, and [ 2] can be directly
obtained, from which we conclude that the average queue size is given by

[ ( )] =
( 1)

(1 )
(5.8)

where denotes the normalized average traffic load.
Note that in this case the average memory size is linearly proportional to the mean

burst size. Figure 5.4 illustrates the aggregate amount of on-chip memory needed for
a switch of 100 ports whereby packets are 64 bytes in size. The mean burst size is 16
packets. The reader should note that at 10 Gbps per port, this switch has an aggregate
capacity of a terabit/s.

5.3.3 Sufficiency Condition on the Number of Memories

In this section, we provide some complexity results for the memory requirements of
the pipeline architecture. In the proposed model, rows of the pipeline are arranged in

sequential blocks, whereby there is one row per input port (for a total of rows)
in the first block. As such, every input port writes its packets to one row. A cell in
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block can only jump vertically to a cell in block + 1. In order to illustrate the
underlying memory-management principal, we shall refer to the following example.

Example 1. Consider the simple scenario depicted in Figure 5.5. The state of the
pipeline for four time slots (i.e. + 1 + 4 + 5) is shown. At time , there are
two packets in the second row and two packets in the third row, all with the same
departure time . Two packets are located at diagonal positions, and since there
are two packets ahead of them with the same departure time, they shift down to a
row in the second block (row 6) and then move one position to the right, as shown
in the pipeline diagram for time + 1. Note that the packets were not permitted to
move to row 5 since their position is already occupied with two other packets with
departure times and . At time + 4, the second packet with departure time

in row 6 reaches the diagonal element, and, since there is another packet ahead
of it with the same departure time, it moves vertically to a row in the third block
(row 7), followed by a one step shift to the right, as shown in the + 5 diagram.
In this example, the pipeline consisted of three blocks of rows with 4, 2 and 1 rows
in each, respectively. As will be discussed later, partitioning the structure into these
blocks facilitates the complexity analysis as well as memory requirements of the
architecture. We emphasize that the number of rows in each block is used only for
illustration purposes. In the next lemma, we compute the number of the rows that are
required for each block.

Lemma 1. There should be at least 2 rows in block , for [2 3 ].

Proof. Consider a cell that is shifting vertically from block to block + 1. It will
find at most 1 rows blocked by other packets, since there have been at most

1 other packets that may have arrived at the same time as this packet and may
have shifted down in prior time slots. Moreover, it will find at most 1 other
rows having packets with the same departure time. Note that there could be at most

1 other packets in the system with the same departure time; however, of them
have already been accounted for having caused this packet to jump to block + 1.
Therefore, there are at most 2 2 rows (or locations) that this packet cannot
move to in block +1. Using the pigeon-hole principle, we conclude that 2 is
a sufficient number of rows for block [2 3 ].

From lemma 1, for a switch with ports and blocks, the total number of rows
(parallel memories) can be expressed as

( ) = + (2 2) + (2 3) + + (2 )

= + 2 ( 1) ( + 2)( 1) 2

= 2( 1) ( + 2)( 1) 2 (5.9)

In order to compute the number of rows, we have to find ( ), which directly
reflects the maximum number of vertical shifts a packet can perform prior to being
successfully assigned to a memory. We shall refer to Example 1 and derive an upper
limit on the number of conflicting packets with the same departure time in the fourth
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Figure 5.5. Example illustrating the proposed memory-management algorithm for a 4-port
switch. The state of the pipeline structure is depicted for 4 consecutive time slots

block, i.e. after three vertical shifts have occurred. We would like to find an upper
limit on the number of conflicting packets after three shifts and use that recursively
to obtain the maximum number of jumps, and hence blocks, that are sufficient to
guarantee that each arriving packet will be successfully assigned a memory.

Lemma 2. The maximum number of packets with the same departure time in the
fourth block is (

p
( ) 1)2.

Proof. Suppose that there are 1 packets with the same departure time in the first
block. Throughout the proof, we shall refer to this set of packets having the same
departure time. Note that 1 , since there cannot be more than packets with
the same departure time in the system. Let us assume that these packets are located
in 1 ( 1 ) rows of the first block. Therefore, the number of packets that
move vertically to the second block will be 2 = 1 1. Next, we compute
the number of rows in the second block that contain one of these packets. There are
2 = 1 1 packets that have moved to the second block, and the maximum

number of packets that can shift simultaneously to the same row is 1. Hence,

2

¹
1 1

1

º
(5.10)

Therefore, the maximum number of packets with the same departure time that
can move to the third block is given by
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3 = 2 2 1 1

¹
1 1

1

º
(5.11)

If 1 1 is divisible by 1, then

3 1

µ
1

1

1

¶
1 + 1 (5.12)

otherwise, since 4 3 1, we have

3 1

µ
1

1

1

¶
1 + 2

4 1

µ
1

1

1

¶
1 + 1 (5.13)

The maximum value of the expression in (5.13) is reached when 1 = 1.
Substituting 1 = , yields the inequality

4

³
1
´2

(5.14)

Note that if is a complete square we have,

3

³
1
´2

(5.15)

In the following corollary, we exploit these results to determine the order of the
memory blocks.

Corollary 1. A sufficient number of parallel memory blocks required for an ×
switch, employing the proposed architecture, is

³ ´
Proof. Equation (5.14) shows that for an -port switch, the maximum number of
conflicting packets with the same departure time in the fourth block is at most
2 + 1. Let ( ) represent the number of stages required for an -port switch.
We thus have

( ) = ( 2 + 1) + 3 (5.16)
(1) = 1

from which we conclude that ( ) =
³ ´

.

Theorem 1. For an -port switch, where 2 {1 2 }, the number of
memories is

( ) 4 3 5 2 + + 1 (5.17)

with equality if = 2.
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Table 5.1. Breakdown of the number of rows in each block for a 16-port PSM switch

Block Number Number of Memories
1 16
2 30
3 29
4 28
5 27
6 26
7 25

Proof. We prove the equality for = 2, suggesting that the general case triv-
ially follows. We first show by induction that the number of required row blocks are
( 2) = 2 1. For = 1 the result is trivial. We assume that the result holds for
and infer it for + 1. For = ( + 1)2, using Lemma 2 and (5.15) (given that

is a complete square), we have³
( + 1)

2
´
=

¡
2
¢
+ 2 = 2 1 + 2 = 2 ( + 1) 1 (5.18)

Then, we utilize the relationship proven for in (5.9) to obtain¡
2
¢
= (2 1) ( + 2) ( 1) 2

= (4 3) 2 (2 + 1) (2 2) 2

= 4 3 3 2 2 2 + + 1

= 4 3 5 2 + + 1 (5.19)

The above theorem states that the number of parallel memories required in this
architecture is ( 1 5). Given that the minimum number of memories is ( ),
the increased memory requirement observed is the price paid in order make the as-
signment problem parallel and feasible from an implementation perspective. For ex-
ample, for = 16 (i.e. = 4), the number of parallel memory elements is 177,
arranged in 7 blocks. Table 4.1 provides the number of rows in each block for such a
switch.

Lemma 2 provides an upper bound on the number of memories required. In order
to illustrate a case whereby this is reached, we shall refer to the following example.

Example 2. We refer to the following adversarial scenario pertaining to a 9-port
switch, which is easily extendable to larger switch sizes when is a complete
square. Consider the settings illustrated in Figure 5.6. There are nine packets with
the same departure time residing in the first block of memory. The first three packets
are scheduled, while the others are shifted vertically to the second block. Note that
packets 4, 5 and 6 reach the diagonal together and hence move down simultaneously.
As shown, they may end up in the same row. A similar pattern of behavior is ob-
served for packets 7, 8 and 9. Packets 6 and 9 are scheduled in the second block,
while packets 5, 8 and 4, and 7 move to the third block. Once again packets 5 and 8
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move simultaneously to the same row and packets 4 and 7 to a different row. Clearly,
after two moves we end up with a set of four conflicting packets, e.g. from = 3 we
reach a condition with = 2. Similarly, we need two more shifts to reach a point
with only one packet in a block.

5.4 Implementation Considerations

5.4.1 Logic Dataflow

This section provides a detailed discussion on the different implementation aspects
pertaining to the proposed architecture. In particular, we focus on the timing re-
quirements, using a practical realization of the proposed scheme, and derive related
scalability properties.

It should be evident that the critical path in the design is the memory assignment
process that takes place at the diagonal elements, or decision cells, of the pipeline
structure. Let us review the assignment process. Each decision cell, residing on row

( [1 2 ]) must determine whether a packet, , can be placed at the mem-
ory associated with row . The memory is considered available for packet placement
if it does not already contain a packet with the same departure time as the packet
residing in the decision cell. If the memory is occupied with a packet with the same
departure time, then the packet is shifted to another row.

The following three criteria govern the movement of packets to a new row :

1. The memory located on the selected row ( ) cannot contain a packet departing
at time .

2. No other packets on row , ahead of the packet moved and which have yet to
reach a diagonal location, can have a departure time .

3. Row must not contain one of the 1 possible packets that have the same
arrival time as the shifted packet. In other words, the position in the new row
should be unoccupied.

To satisfy the first placement rule, each memory maintains an availability vector
(see Section 5.3.2) of length , to indicate locations available for the placement of a
packet at time . In a distributed shared memory switch, each shared memory will
contain cells representing consecutive departure times. This dictates the size of
the availability map (see Section 5.3.2) which consists of availability vectors. Note
that in order to perform the appropriate selection for packet with departure time

, the column of bits pertaining to the th position in the availability map should
be examined. Based on Lemma 1, since a packet always shifts into the next block,
we note that the maximal number of rows that is to be examined by each diagonal
location for shifting a packet is 2 2. This inherently bounds the critical path of the
design, since it defines an upper bound on the search space that must be considered
at each diagonal element.

While the availability map provides information as to the memories contents,
it does not provide any information regarding the location of packets that arrived
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Figure 5.6. Adversarial scenario demonstrating the sufficiency bound on the number of mem-
ory units for a 9-port switch

during the same time slot as . There are at most 1 packets that arrived at the
same time as . Having stated that a vector of length 2 2 is sufficient to locate
an available row, an occupancy vector must be created to determine the location of

1 packets within the 2 2 subset reflecting potential adequate rows. Hence,
the bitwise-OR of the occupancy vector and the availability vector provides a single
decision vector representing viable rows for packet placement. The decision vector
defines rows which (1) are not associated with memories that contain a packet with
departure time , and which (2) do not contain a packet with the same arrival time
as .
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Figure 5.7. Outline of the process performed at the decision cells

The memory-management algorithm is based on selecting an available memory
from one of 2 2 memories, reflected by the decision vector, such that all
packets are placed at the end of the ( 1 5) phases. The decisions made at each
location are represented by the flowchart in Figure 5.7.

As stated previously, we first determine whether the packet in the decision cell
is blocked by a packet with the same departure time as . If the least significant
bit (LSB) of the availability vector, representing the memory unit residing on the
decision cell’s row, is set to ‘1’, then the memory is considered blocked and the
packet must be placed on a different row. In this case, the decision cell uses the
result of the bitwise OR between the availability and occupancy vectors to create the
decision vector. This decision vector is then presented to a row selection unit, which
selects an available row from one of 2 2 rows. Once the row is selected, the
decision cell presents a write enable, as well as , to each of the 2 2 pipeline
packets below the current decision row during the next pipeline stage. The result of
this decision process is that is either written to the memory associated with the
row in which it resides or placed in a row that is free of conflict.

To this point, the availability vector has been presented as a bitmap of memories
with a vacancy at departure time . It should be noted that although each decision
cell only requires an availability vector of size 2 2, the availability map consists
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Figure 5.8. Illustration of the memory speedup logic representation

of a set of vectors since each decision cell is offset by one memory relative to the
decision cell located on the prior row. Moreover, it is unknown at which departure
time a decision cell will request, further establishing the need to maintain a ×
availability map. A -to-1 multiplexor is used to select one of the bit vectors with
a 2 2 bit-sliced availability vector to be presented to each decision cell.

In order to avoid an 2 memory requirement, we must refrain from placing
packet in a row that already contains a separate packet with the same departure
time as . To support this requirement, packets must update the availability map
when they are placed in a new row. It has been stated that decision cells place con-
flicting packets in one of 2 2 rows below it. Given that 2 2 decision cells could
select the same row, a logical OR of the 2 2 potential departure times located in
each memory’s row is required to maintain the integrity of the availability map. If we
maintain a strict row-to-physical-memory coupling, we can introduce speedup into
the system. Let the memory speedup be defined as the number of logical memories
assigned to a single physical memory, for each departure time.

We can now also state that a packet can be placed in a physical memory, at a given
departure time, so long as there exists at least one logical memory location available
at that departure time for the physical memory corresponding to the packet’s row.
This allows us to view the availability of a single memory as an × register file,
illustrated in Figure 5.8.

Furthermore, we can assert that a decision cell only requires information that
indicates at least one logical memory location is available for a given departure time.
Considering such simplification, we can directly apply a bitwise OR to each speedup
vector at a given departure time, as presented in Figure 5.9, to derive a single coherent
availability bit.

This allows us to represent available memories to the decision cells from a phys-
ical perspective, rather than a logical one, resulting in a decreased decision time. The
delay cost of a logical-to-physical memory address translation is only introduced
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Figure 5.9. Illustration of the memory speedup logic representation

Figure 5.10. Consolidation of the speedup vector to derive the available row location

when the decision cell actually places the packet. In effect, the burden of placing
packet at one of offsets at departure time is shifted from the decision cell to
the memory unit. The departure time serves as the base address for writing a packet
to that memory. When speedup exists, the offset address within a given departure
time is determined when a memory occupation bit is set in the single memory avail-
ability vector. The single memory availability vector is constructed from availability
cells, the logical building blocks, presented in Figure 5.10, implement a ripple struc-
ture to set a single register within a speedup vector. The decision cell drives the set
signal high for a given departure time. The set signal is then distributed to all avail-
ability cells within a given speedup vector. A found signal is propagated from the
least significant bit to the most significant bit of the speedup vector to indicate that
an available offset has been located.

The first availability cell to locate an available offset blocks all subsequent avail-
ability cells from setting their availability cell bit. The inherent delay in ripple struc-
tures is not considered to be significant, given that speedup vectors are relatively
small with lengths ranging from 2, 4, or 8 bits wide. The alternative to the ripple
delay is allowing the decision cells to select an available memory from (2 2)
logical memory locations. Given this alternative, the ripple delay is preferable.

While we have covered all aspects of the placement process, we have yet to ad-
dress issues associated with retrieving packets from the shared memory structure
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and transmitting them to the correct output, or egress, port. Given a set of ( 1 5)
memories, constructing a 1-to- ( 1 5) multiplexor at each output port is imprac-
tical for the desired port densities. A more practical solution is to present a single
shared packet bus to each shared memory unit. As packets are read from memory,
each egress port will have at most one packet destined for it at any given time. Cor-
respondingly, we can present the shared packet bus, of size _ , to each
shared memory unit such that each th bus slice, of size packet_size, represents a
packet destined for output . Each shared memory unit determines the destination
of the packet it is transmitting to an egress port and only drives the th bus slice of
the packet bus. As such, each egress port will only be responsible for transmitting
the packet located at the th bus slice, corresponding to the port enumeration of the
packet bus. The implementation cost of this approach is reflected in the requirement
for an -to-1 multiplexor to be located in each memory cell.

5.4.2 FPGA Implementation Results

To establish the viability of the proposed multistage PSM memory-management ar-
chitecture, we have implemented the critical path in VHDL and synthesized its com-
ponents targeting a Xilinx Virtex-4 XC4VLX200-10-FF1513 device. This imple-
mentation consists of 16 ports operating at 40 Gbps each, representing a switch with
an aggregate capacity of 640 Gbps. The maximum departure time value configured
to be 64. With no logic speedup, the physical resource requirements for the system
are as follows: physical memories – 176, decision cells – 176, registers ~= 15 4 ,
pipeline depth – 176. After packets are placed into shared memories, they are pre-
sented at the output of the PSM switch every 12 5 ns. Given a link speed of 40 Gbps,
and considering 64-byte packets, the scheme is only realizable if packet placement
decisions can be made in less than 12 5 ns. We therefore consider the worst-case
path, along with associated delays attributed to each decision made along this path.

First, we have identified the worst-case path origin to be the availability vector,
which is obtained as an output of a -to-1multiplexer applied to the availability map.
The maximum departure time value, having previously stated to be 64, requires the

-to-1 multiplexer design multiplex 64 potential availability vectors for presentation
at the decision cell. The resulting 64-to-1 multiplexer was found to have an overall
delay of 2 57 ns.

The selected availability vector is then used by the decision cell to determine the
correct row in which to place conflicting packets. This decision process directly cor-
responds to the flow diagram presented in Figure 5.7. The time required to identify
a memory conflict, followed by locating an available row, was found to be 3 823 ns.
Once the available row is located, a bitwise OR is applied to the departure time and
the potential 2 2 packets that may be attempting to relocate to the same row. This
is required, as discussed earlier, to maintain the integrity of the availability map. The
delay associated with this wide OR was 1 52 ns. Registering of the departure time
denotes the terminating point of the worst-case path, from which we can assert that
the worst-case delay is 7 913 ns – well below the 12 5 ns limit stated above. As a
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final note, the overall latency contributed by the architecture with respect to a pure
output-queued switch is 2 2 s (176 stages of 12 5 ns each).

5.5 Conclusions

The notion of designing a packet switching fabric on a chip was introduced and stud-
ied from a pragmatic as well as technological perspective. It has been argued that
in the context of emulating an output-queued switch, a core challenge pertains to
the memory-management algorithm employed. A proposed packet-placement algo-
rithm and related architecture were described in detail, emphasizing the feasibility
attributes. The switch model and framework presented can be broadened to further
investigate the notion of consolidating multiple switch fabric functions on silicon.
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The increasing demand for higher data rates on the Internet requires routers that de-
liver high performance for high-speed connections. While output-buffered switches
are known for their limited scalability, input-buffered (IB) switches have been of in-
terest for research and commercialization. However, IB switches may not be able
to keep up with the increasing data rates as optical technology advances rapidly. To
keep up with the increasing data rates, switches based on internally buffered cross-
bars are considered a feasible solution for the next generation packet switches. The
cost associated with internally buffered crossbar switches is tied to the addition of
buffers to the crosspoint elements. Here, we present an overview of several internally
buffered crossbar switches and their selection schemes. Furthermore, we discuss the
properties of the different approaches to internally buffered packet switches.

6.1 Introduction to Packet Switches

The exchange of information within the Internet is made possible by the switches and
routers interconnecting networks. These routers facilitate networks to communicate
by using a shared language or protocol. An example of such protocols employed at
different network layers are Ethernet, Asynchronous Transfer Mode (ATM), or the
popular TCP/IP suite. These protocols determine the packet formats and the way to
find a route from the source host to the destination host.

In the remainder of this chapter, we consider the IP protocol to define the packet
term. Therefore, switches and routers are required to process IP packets. However, a
large number of packet switches base their architecture on ATM technology, where,
different from IP packets, ATM packets have fixed lengths, called cells. IP packets,
however, can be handled by cell-based switches as variable-length packets are seg-
mented at the input ports, and switched from input to output in a cell-based fashion.
Variable-length IP packets are re-assembled at the output ports before they depart to
other switches. Here, we refer to cells as fixed-length packets, which are not neces-
sarily ATM cells.
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Packet switches identify the destination of packets at the input ports and forward
them to the appropriate output ports, completing in this way the packet processing at
layer 2 of the Open System Interconnection (OSI) model. Those switches that find
out information about the connectivity between networks and paths to reach different
possible destinations are referred to as routers. This information is summarized in a
forwarding table that is used to determine the output port of the switch according to
the destination of the traversing packet. These routers are devices performing tasks at
layers 2 and 3. Once output ports are defined in a forwarding table, a switch performs
the scheduling and forwarding of packets.

As interconnection technologies mature, such as those based on optical technol-
ogy, data rate increases and routers need to keep up with that by processing packets
fast. The functions that require high performance in routers are identifying the packet
type, so that the packet can be processed accordingly (including forwarding), and
switching the packet from an input to an output port. Here, we focus on switching
a packet from the input port to an output port. The task seems simple; however, it
gets complex as there is the possibility that several packets need to go from different
inputs to the same output. Therefore, this creates the necessity of interconnecting
input and output ports, buffering packets and scheduling the packet switching time.
A scheduler selects the time a packet is switched to the output. The complexity of
the scheduler depends on the buffering strategy and on the selection scheme used.

A packet switch is comprised of input port cards and a switch fabric. An in-
put port card, also known as a line interface card (LIC), determines the processing
the switch performs on each packet. Some of these functions are: packet classifica-
tion, destination lookup (IP lookup for IP packets), buffering, packet modification,
and packet interfacing for internal switching. The switch fabric is an interconnec-
tion network used by the LICs. The way a switch operates internally depends on
the switch fabric used. A plethora of switch fabrics have been developed for packet
switches. Many of them were developed for the telephone network and are now ap-
plied to packet networks. We can divide switches into single- and multiple-stage. A
single-stage switch is a fully interconnected network, where all inputs are directly
connected to each output. Crossbar switches are examples of single-stage switches.
In a multiple-stage switch (such as Clos [1] and Banyan [2] networks), each input is
connected to a switch module instead of to all other outputs, and a packet may reach
its destination after passing through two or more switch modules. A switch module
is a small switch with two or more ports. A good example of a multiple stage switch
is the 3-stage Benes switch.

6.2 Crossbar-based Switches

Crossbar switching fabrics are very popular for switch implementation due to their
non-blocking capability, simplicity, modularity, and their market availability. In a
crossbar, there are 2 switch elements, also called crosspoints, for input ports
and output ports allowing any input to connect to any output. The performance of
a switch depends on the adopted buffering strategy.
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An OQ switch has queues at each output. All arriving cells at the inputs must
be immediately delivered to their outputs, and therefore, the output queues must be
able to store up to cells in a time slot. This requires high interconnection and
memory bandwidth at a speedup of times the line rate. For an × OQ switch,
the memory must be able to accommodate write accesses (to write cells into
output buffers) and one read access (to send one cell to the outgoing link) in one-
cell time. This requirement is known as internal speedup of a switch (defined as the
number of times that the switch core works faster than the input line rate). Unfor-
tunately, building memories with suitable working speed for a moderate speedup is
prohibitively expensive. However, the OB switch exhibits the optimum behavior of
an ideal switch and therefore, it has been used as a benchmark for comparison of
switch performance.

A switch with buffers1 at the inputs is termed an input-buffered (IB) switch. IB
switches are desirable because of their scalability and low hardware requirement. IB
switches have an internal speedup of 1 (also considered as no speedup) because the
crossbar fabric has the same speed as that of the external lines. It is well known that,
if first-in first-out (FIFO) input queues are used to hold arriving packets, at every
time slot only the head-of-line (HOL) cell is considered. When a HOL cell cannot be
cleared due to its loss in output contention, it may block every cell behind that may
be destined for a currently idle output. This phenomenon is called the HOL blocking
problem, which limits the throughput to only 58.6% [3]. To eliminate HOL blocking,
virtual output queuing (VOQ) can be used; each input buffer is partitioned into
queues with one queue for each output port. Each arriving packet is classified and
then queued into the appropriate VOQ according to its destination output port.

However, IB switches [4] need to resolve input and output contentions before
cells are forwarded to the outputs. Arbiters at input and outputs perform contention
resolution by means of a matching process. Furthermore, the switching performance
of an IB switch requires complex matching schemes to provide high-performance
switching. This high complexity limits switch port speeds. The requirements for ar-
biters to be feasible and to provide a high performance are: (a) low complexity, (b)
fast contention resolution, (c) fairness, and (d) high matching efficiency. As an ex-
ample, a matching scheme must perform input or output arbitration within 8 ns in an
IB switch with 40 Gbps (OC-768) ports and 80-byte cells, assuming that input and
output arbitrations may use up to half a time slot and that the transmission delays are
decreased to negligible amounts (e.g. the arbiters are implemented in the same chip,
in a centralized way).

A matching can be maximum or maximal. A maximum match is a maximum car-
dinality bipartite matching of input with packets queued to outputs. A maximal
match is a matching that cannot be improved without removing some input–output
matches. Theoretically, a maximum weight matching (MWM) algorithm provides
100% throughput for any no-overbooking traffic. However, the scheme’s complexity
prevents its implementation for fast speeds. Maximal matching schemes have been
considered as an alternative to maximum matching schemes; SLIP, dual round-robin
1 This chapter uses the terms queue and buffer interchangeably.
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matching (DRRM), and longest output occupancy first algorithm (LOOFA) are some
examples. To make up for the lack of efficiency that a maximal scheme has (com-
pared to a maximum type), a number of iterations, where the number of iterations
is the number of times that an algorithm is performed to obtain a cumulative result,
speedup, or the number of both is used, as in LOOFA. SLIP is a typical example of
an iterative matching scheme. SLIP provides 100% throughput for uniform traffic,
but because of the arbitration time, it has been proposed for a small number of ports
due to its centralized implementation. Transmission of phases such as request, grant
and acknowledge are performed within a cell slot between input and output arbiters.
This transmission of information reduces the available time for arbitration because
transmission phases are performed during the cell slot in serial with input and output
arbitration, even when the transmission is done within a single chip.

Although Store-Sort-and-Forward (SSF) [5], a frame-based scheduling scheme
for IB switches, has proven to provide QoS guarantees without requiring speedup,
speedup is another approach to tackle the lack of efficiency by scheduling in IB
switches. When the internal speedup is between 1 and 1, buffering is required at
both the inputs and outputs. Hence, a combination of an input-buffered and an output-
buffered switch is required, which is a combined input output buffered (CIOB)
switch. With a speedup of 2, most maximal matching algorithms can achieve 100%
throughput under any admissible traffic. However, as the demand for high switching
rates increases, the speedup shortens the time for performing matching because this
time is divided by speedup. Therefore, iterative-based algorithms may have no time
to find a maximal matching and neither to perform several iterations.

6.3 Internally Buffered Crossbars

Internally buffered crossbar switches employ buffers within the switch elements. In
these switches, packets go from an input line to the crosspoint buffers and wait there
until they are served towards the output port. Therefore, input selection is performed
at each output of the buffered crossbar. We call a buffered crossbar (BC) switch a pure
buffered crossbar because in this architecture buffering is only at the crosspoints.
When more than one cell is contending for the limited link capacity at its outputs,
buffers store the cells that lose contention. Since the buffer size is finite, arriving cells
are discarded when the buffer becomes fully occupied.

Since the number of buffers in a crossbar grows in the same order as the number
of crosspoints, ( 2), the implementation was considered costly for a large buffer
size or large in which VLSI memory implementation requires a large amount
of real estate in a chip. As the technology for chip manufacture has matured, the
implementation of buffered crossbar switches has become feasible.

One of the first pure buffered crossbar switches was proposed in [6], and later in
[7]. However, this architecture was named the Butterfly switch at the time.

Another of the first internally buffered switches was presented in [8], where a
2 × 2 crossbar chip with a crosspoint buffer size of 16 Kbytes, with input buffers.
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Figure 6.1. Crosspoint buffered switch

The output polls the crosspoint buffers to decide which packet can be served out of
the buffered crossbar.

Buffered crossbar switches need output arbiters to select a cell, stored in the
crosspoint buffer, to be sent to the output port. Therefore, the performance of this
switch depends on the output arbitration. The output arbitration scheme considers
all crosspoint buffers and selects one according to a selection policy. Therefore, the
time and computation complexity of an output arbitration scheme is a function of the
number of crosspoint buffers (or inputs, ) at an output, or ( ).

An example of a BC switch that emphasizes output arbitration is the scalable
distributed arbitration (SDA) switch [9]. The SDA switch reduces arbitration time
by using a distributed approach for the output arbitration in each output. Instead of
considering inputs at any given time, an arbiter is partitioned into 1 selectors,
where each selector considers two buffers. This switch performs random selection of
cells (crosspoints) at each output. The SDA switch has a crosspoint buffer, a transit
buffer, an arbitration-control block (CNTL), and a selector at every crosspoint. A
crosspoint buffer sends a request (REQ) to CNTL if there is at least one cell stored
in the crosspoint buffer. A transit buffer stores several cells that are sent from either
the upper crosspoint buffer or upper transit buffer. The transit buffer has a size of one
or a few cells. The transit buffer size is determined by the round-trip delay of control
signals between two adjacent crosspoints. The longest control signal transmission
distance for arbitration within one cell time is the distance between two adjacent
crosspoints. In a switch with implementation of the output arbiters in a centralized
fashion, the control signal for arbitration must pass through all the crosspoint buffers
belonging to the same output line to complete the selection each time slot, and there-
fore, the arbitration time depends on the number of inputs (or crosspoints). In this
way, the arbitration time in the SDA switch is independent of the number of input
ports.
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Figure 6.2. Scalable distributed-arbitration switch structure

The SDA switch was tested under uniform traffic with Bernoulli arrivals with an
input load of 0.95 for different switch sizes ( = {4 32}). This switch delivers
a cell average delay of less than 100 time slots. Another feature of the SDA switch
is fairness. This is achieved by the nature of the distribute selection scheme using
different selection probabilities for different inputs at a crosspoint, such that the total
selection probability by an output is the same for any input.

6.4 Combined Input–Crosspoint Buffered (CICB) Crossbars

In order to reduce the crosspoint buffer size, input buffers can be used with larger
capacity as these buffers are located in the input ports, and the amount of memory
at the input ports (outside of the buffered crossbar) can be of large size (e.g. several
memory chips). CICB switches that use the FIFO policy in their input buffers are the
simplest of them, and are called FIFO–CICB.

6.4.1 FIFO–CICB Switches

In [10], an input and crosspoint buffering matrix switching architecture with FIFO
input buffers, or FIFO–CICB switch, was proposed. In [11], a FIFO–CICB switch
input buffers and random selection policy at the output was proposed and shown
to provide high throughput. CICB switches with single-cell crosspoint buffers were
proposed in [12, 13]. These switches also used FIFO input buffers at the input ports,
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Figure 6.3. Combined input–crosspoint buffered crossbar switch with FIFO input buffers

or FIFO–CICB switches. The switches provide a throughput of 91%, where, how-
ever, the HOL blocking [3] was still present. The FIFO buffers at the inputs limit the
maximum throughput in that switch because the HOL blocking cannot be completely
eliminated. These switches showed the need to remove the HOL blocking that was
present in IB switch and then, inherited by FIFO–CICB switches.

Another example of a FIFO–CICB switch, with a different architecture approach,
a multiple-plane architecture, is the Tandem-crosspoint (TDXP) switch [14]. The
main purpose of the TDXP switch is to overcome HOL blocking by using the paral-
lel switch technology. This switch has multiple crossbar switch planes as shown in
Figure 6.4. The switch planes are connected in tandem at each crosspoint. There is
a one-cell buffer in the crosspoint. The internal speedup in each plane is the same
as the input/output line speed. Each switch plane can transmit only one cell to each
output port within one cell time slot. The HOL blocking phenomenon occurs at the
input buffers, where the FIFO policy is used.

The TDXP switch improves the switching performance by using multiple planes.
In this way, cells will not cause HOL blocking as there is room for a cell in each
switch plane. This is similar to letting the first cells of a FIFO participate in the
output arbitration process, where is the number of planes in the TDXP switch.
In a 32 × 32 switch, the throughput provided is above 95%, which is a significant
improvement over an IB switch with FIFO input buffers.

In addition to this technique, the HOL blocking problem for FIFO buffers can be
overcome in CICB switches by using virtual output queues (VOQs), where a VOQ
is a queue in the input that stores cells destined for a specific output. CICB switches
with VOQ are denoted as VOQ–CICB (see Figure 6.5). However, for the sake of
brevity, we refer to VOQ–CICB switches as CICB switches in the remainder of this
chapter.
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Figure 6.4. Tandem-crosspoint (TDXP) switch with three planes

6.4.2 VOQ–CICB Switches

Consider a CICB switch with inputs and outputs. In this switch model, there are
VOQs at each input. A VOQ at input , where 0 1, that stores cells for

output , where 0 1, is denoted as . A crosspoint (CP) element in
the CICB that connects input port to output port is denoted as . The buffer
at is denoted as . The size of , , is indicated by the number
of cells that can be stored. A credit-based flow-control mechanism indicates to input

whether has room available for a cell or not, as described in [15].
is said to be eligible for selection if the VOQ is not empty and the corresponding

, at BC, has room to store a cell.
The round-trip ( ) time, as in [15], is defined as the sum of the delays of the

input arbitration ( ), the transmission of a cell from an input to the crossbar ( 1),
the output arbitration ( ), and the transmission of the flow-control information
back from the crossbar to the input ( 2). Figure 6.6 shows an example of for
input 0 by showing the transmission delays for 1 and 2, and arbitration times,

and . Cell and bit alignments are included in the transmission times. The
following condition is for this switch to avoid underflow

= 1 + + 2 + (6.1)

where is the crosspoint buffer size (in time slots) which is equivalent to the number
of cells that can be stored. In other words, the crosspoint buffer must be able to store
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a number of cells to keep the buffer busy (i.e. transmitting cells) during at least one
time.
As the buffered crossbar switch can be physically located far from the input ports,

actual round trip times can be non-negligible. To support non-negligible round-trip
time in a buffered-crossbar switch, the crosspoint buffer size needs to be increased,
such that up to cells can be buffered. Non-negligible round-trip delays have been
considered recently in [16], [17], and [18], for practical implementations.
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6.4.3 Separating Matching into Input and Output Arbitrations

CICB switches use selection time efficiently as input and output port selections are
performed separately.2 For each input in a CICB switch, there is one input arbiter,
which separately resolves input contention, i.e. a VOQ is selected to transfer a cell
into the switch core. The arbitration of an input is independent from the arbitration
of the other inputs, and from output arbitration. In a similar way, for each output,
there is one output arbiter which independently deals with output contention, i.e.
decides which crosspoint buffer is allowed to transfer a cell out of the switch core.
The output arbitration is separated from the arbitration of other outputs and from
input arbitration. The input and output arbiters are only coupled by the flow control
mechanism [19]. Each crosspoint buffer and corresponding VOQ has an associated
credit which is used as a flag for the state of the crosspoint buffer (1=full, 0=empty).
During the input scheduling phase, the input scheduler at each input selects a non-
empty whose credit state is 0 and sets the credit status to 1. During the
output scheduling phase, the output scheduler at each input selects a non-empty
crosspoint buffer ( ) whose credit state is 1 and sets the credit status to 0. Back
to the example of the stringent timing, a CICB switch with 40-Gbps and 80-byte
packets can perform input (or output) arbitration within 16 ns, and therefore, the
timing for arbitration is extended.

The use of VOQs in a CICB switch allows us to apply different selection (or
arbitration) schemes at the inputs, and the existence of crosspoint buffers at an output
allows different selection schemes to be selected at the outputs. We can divide the
arbitration schemes in CICB switches into weight-based schemes and weightless
schemes. Weight-based schemes assign a weight to each contending queue and the
arbiter selects the one with the largest weight. The weight of a queue is assigned
according to the measurement of a common parameter in all contending queues, such
as the age of the cells. A weightless scheme assigns the same weight (usually 1) to all
queues, and queue selection is performed according the the order they were selected
in the past or any arbitrary rule (e.g. random). Input and output arbitration can use
the same or different schemes. They can also be a combination of weighted and
weightless selection schemes. The following sections present several combinations
of input and output arbitration schemes in a CICB switch.

6.4.4 Weighted Arbitration Schemes

Oldest-cell First (OCF) and Round-robin Arbitrations

One of the advantages of having large input buffers in a switch is that weights can be
assigned to VOQs in different ways. Therefore, an input arbiter can perform VOQ
selection in a weight-based fashion. A CICB with weight-based input arbitration
was presented in [20], where oldest cell first (OCF) selection for input arbitration
2 Other switches, such as IB switches, need to perform matching; output selection (input ar-

bitration) can be performed after input selection (output arbitration) in a sequential manner.
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Figure 6.7. Example of LQF-RR among three queues in a 3× 3 switch

and round-robin selection for output arbitration were used. We denote this combina-
tion as OCF-RR. A CICB switch using this combination showed high performance
compared to an IB switch.

This CICB switch with timestamp-based arbitration and VOQs at the input ports
showed that the crosspoint-buffer size can be small if the VOQs are provided with
enough storage capacity. This approach was also studied in [23].

Longest Queue First and Round-robin Arbitrations

One of the advantages of using weight-based arbitrations is that stability can be stud-
ied. Stability of a switch provides information about the maximum throughput, i.e.
100%, by a switch. In general, a switch is considered stable if the occupancy of the
input buffers is stable. This means that the occupancy size is bounded. The longest
queue first (LQF) selection [21] and the longest normalized queue first (LNQF) se-
lection [22] have been considered and analyzed for IB switches. With that, LQF was
applied into CICB switches [23]. Through a fluid model [24], it was proved that a
CICB switch with the combination of LQF as input selection and RR as output se-
lection (LQF-RR), with one-cell crosspoint buffers, obtains 100% throughput, where
each input–output pair has a load no more than 1 (i.e. traffic with a uniform dis-
tribution).

Most Critical Internal Buffer First

One of the reasons LQF was not applied to output arbitration schemes is because
switches were considered with one-cell crosspoint buffers, where the weights could
only be {0,1}, making LQF ineffective at the outputs. An alternative for weight as-
signment is presented in [25]. Here, a scheme named Most Critical Internal Buffer
First (MCBF) is proposed. This scheme does not consider the state of a single cross-
point buffer, but rather the set of crosspoint buffers in the buffered crossbar. MCBF
favors the least occupied internal buffer at the input side, named shortest internal
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buffer first (SBF), while the output favors the most occupied internal buffer, named
longest internal buffer first (LBF). MCBF is based only on the crosspoint buffer
information, by which the MCBF scheme makes good use of the CICB switch’s
advantage provided by the crosspoint buffers.

The line of crosspoint buffers is defined as the set of all the internal
buffers ( ) that correspond to the same input and holding cells for all the
outputs. is the number of cells in . The column of crosspoint buffers

is defined as the set of the internal buffers ( ) that correspond to the
same output and receiving cells for all the inputs. is the number of cells in

. The MCBF scheme is based on the shortest internal buffer first (SBF) as
input arbitration and on the longest internal buffer first (LBF) for output arbitration.
These arbitration schemes work as follows:

• Input arbitration SBF scheme: for each input , select the first eligible VOQ cor-
responding to and send its HOL cell to the internal buffer .

• Output arbitration LBF scheme: for each output , select the first corre-
sponding to and send its HOL cell to the output.

The MCBF scheme has three major properties. First, MCBF has simple hardware
complexity when compared to LQF-RR and OCF-OCF, because MCBF’s arbitration
decisions are based on the number of cells in the internal buffers ( , ).
For a × CICB switch with one-cell crosspoint buffer, an arbiter’s encoder con-
sists only of log bits. Second, MCBF is a scheme which is almost stateless. It per-
forms arbitration without any type of state information about the input VOQs. The
only feedback information that MCBF needs to have during its arbitration process is
whether an input VOQ is empty or not. Finally, MCBF is designed to be a matched
pair of input and output in finding matched scheduling. No output is idle so long as

1.
Figure 6.8 shows an example of VOQ selection by an input arbiter in a 4 × 4

switch. Figure 6.8(a) shows the state of the CPBs with 1 for those that are active and
0 for those CPBs that are idle (empty). Figure 6.8(b) shows the column occupancy as
seen by each input (matrix row). For example, input 1, the second row, has two CPBs
available (i.e. idle), 0 2 and 0 3 (assume that 0 3, where input 0
is the top row and output 0 is the left-most column). Therefore, input 0 can choose to
serve a cell from 0 2 or 0 3. The column occupancy is then 2 and 1 cells
for output 2 and 3, respectively. Therefore, using SBF, 0 3 is selected.

Figure 6.9 shows an example of the selection process of a CPB that LBF performs
in a 4 × 4 buffered crossbar, which is represented as a matrix. In this matrix, rows
represent inputs and columns represent outputs. A CPB with a cell is represented by
1 (busy), and 0 (idle), otherwise. Figure 6.9(a) shows the state of CPBs as busy and
idle crosspoints. Figure 6.9(b) shows the input occupancy seen by the output arbiters
per CPB. For example, 0 0 is 1 as there is only one cell from input 0 for all
outputs. An Idle CPB is indicated by a zero as it is ignored by the output arbiter. This
figure also shows that this example has all CPBs from inputs 1 with the longest input
occupancy, and the output arbiters, using the same selection policy, select all CPBs
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Figure 6.8. Example of VOQ selection by an input arbiter using SBF in a 4× 4 switch

from input 1. Therefore, Figure 6.9(c) shows that 1 1 to 1 3 are selected
and also 2 0 is selected, marked with an X.

In a similar way, another scheme named CBF was presented in [26]. CBF differs
from MCBF in the measurement of criticalness of the internal buffer. For MCBF, it
is in terms of the queue length of the internal buffer, while for CBF, it is in terms of
the HOL cell age of the internal buffer.

Performance of Weight-based Arbitration Schemes

The addition of crosspoint buffers in a switch improves the switching performance
when compared to a switch with no crosspoint buffers (e.g. IB switches). In this
section, we present simulation results of weight-based arbitration schemes under ad-
missible traffic. Here, we consider admissible traffic defined as follows. Denote
as the cell arrival rate at input for output that is received in . The traffic is
considered admissible if X

1 (6.2)

and X
1 (6.3)

CICB switches with these weight-based schemes have been simulated under uni-
form traffic with Bernuolli arrivals. In these simulation, it has been observed that the
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average cell delay (queuing delay) is close to that of an OB switch. However, under
non-inform traffic, these schemes provide different performance results.

One of the traffic patterns used to test this is the unbalanced traffic model [15].
The unbalanced traffic model uses a probability as the fraction of input load di-
rected to a single predetermined output, while the rest of the input load is directed
to all outputs with uniform distribution. Consider input port , output port , and the
offered input load for each input port . The traffic load from input port to output
port , , is given by

=

½ ¡
+ 1

¢
if =

1 otherwise (6.4)

When = 0, the offered traffic is uniform. On the other hand, when = 1, it is
completely directional, from input to output , where = .

Figure 6.10 shows the performance of OCF, LQF, and MCBF arbitration schemes
under unbalanced traffic for switches with a crosspoint buffer with size equal to one
cell. This figure shows that LQF and OCF deliver close to 100% throughput for all
values of . MBCF (labeled SBF-LBF) delivers below 99% throughput for some
values of ; however, the throughput is higher than that delivered by an IB switch.
As MCBF depends on the occupancy of the crosspoint buffers, it is expected that the
performance improves as the size of the crosspoint buffer increases.
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Figure 6.10. Performance of weight-based arbitration schemes

6.4.5 Arbitration Schemes based on Round-robin Selection

Weight-based schemes need to perform comparisons among all contending queues
(or crosspoint buffers), which can be a large number, and this may increase the im-
plementation complexity. Moreover, weight-based schemes (e.g. queue-occupancy
based) may starve some queues for a long time to provide more service to con-
gested queues, thus presenting unfairness. On the other hand, RR algorithms have
been shown to provide fairness and implementation simplicity (as no comparisons
are needed among queues) and high performance under uniform traffic [27]. How-
ever, schemes based on round-robin selection have not been shown to provide near
100% throughput under nonuniform traffic patterns with a buffered crossbar hav-
ing small size crosspoint buffers. It has been shown that a switch using RR needs a
large crosspoint buffer to provide high throughput under admissible unbalanced traf-
fic [28], where the unbalanced traffic model is a nonuniform traffic pattern [15]. This
large buffer can make the implementation of a switch costly. Here, we review some
of the round-robin schemes for delivering high performance.

Round-robin (RR) Arbitration

Round-robin (RR) selection has been used in IB switches to provide high throughput
under uniform traffic [29]. RR is attractive because of the high degree of service fair-
ness and its simple implementation, necessary for high-speed switches. RR has been
used in CICB switches [15], [23]. A switch using RR, called CIXB-1, has been used
to show that a CICB switch using one-cell crosspoint buffers and credit-based flow
control can provide 100% throughput for uniform traffic [15]. In CIXB-1, the input
arbiter selects a non-inhibited and non-empty VOQ. The inhibition of VOQs is deter-
mined by the flow control mechanism. A VOQ is said to be inhibited if the crosspoint
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Figure 6.11. Performance of CIXB-1, SLIP under unbalanced traffic

buffer has no room for a new cell. If an input sends a cell from an inhibited VOQ,
then the cell would be lost. The output arbiter performs selection of a crosspoint in a
round-robin fashion, where only non-empty crosspoint buffers are considered. Since
there are no buffers in the output, an output arbiter is not needed to check for inhibi-
tion. After a RR arbiter selects a VOQ (for the input) or a crosspoint buffer (for the
output), the pointer is moved to one position beyond the selected VOQ.

The CIXB-1 switch has some attractive properties: a simple arbitration scheme
and relaxed timing for arbitration. The arbitration complexity is ( ), which can
be reduced to (log ) by suitable encoding logic. This switch has been shown to
provide 100% throughput under uniform traffic with Bernoulli and bursty arrivals.
CIXB-1 was also used to show that CICB switches can deliver higher throughput
than IB switches, as presented in a comparison of CIXB-1, SLIP, and an OB switch.

The throughput of CIXB-1 and SLIP for unbalanced traffic is shown in Figure
6.11. The performance of CIXB-1 is higher than 1-SLIP and 4-SLIP. The throughput
of CIXB-1 is almost 100% when is about zero (i.e. uniform traffic) and about one
(i.e. totally directional traffic).

Compared with the SLIP algorithm, CIXB-1 has better delay performance under
various traffic patterns. However, as actual traffic may present nonuniform distribu-
tions, it is necessary to provide arbitration schemes that provide 100% throughput
for admissible traffic.

Round-robin with Adaptable Frame Size (RR-AF) Arbitration Scheme

As discussed in the previous section, weight-based arbitration schemes, where weights
are assigned to input queues proportionally to their occupancy or HOL cell age, can
provide high throughput under a wide variety of admissible traffic patterns [23], [30].
However, weight-based schemes need to perform comparisons among all contend-
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ing queues, which can be a large number, thus having high implementation com-
plexity. Moreover, weight-based schemes (e.g. queue-occupancy based) may starve
some queues for long time to provide more service to congested ones, presenting
a degree of unfairness. On the other hand, round-robin schemes have been shown
to provide fairness and implementation simplicity, as no comparisons are needed
among queues. Furthermore, these schemes are known to have high-performance
under uniform traffic [27]. However, schemes based on round-robin selection have
not been shown to provide near 100% throughput under nonuniform traffic patterns
with a buffered crossbar having crosspoint buffers of small size. For example, it has
been shown that a switch using RR needs a large crosspoint buffer to provide high
throughput under admissible unbalanced traffic [28], where the unbalanced traffic
model is a nonuniform traffic pattern [15]. This large buffer can make the implemen-
tation of a switch costly.

Frame-based matching has been shown to have improved switching performance
under different traffic scenarios [31]. However, how to set the frame size is a complex
issue. The round-robin with adaptable-size frame (RR-AF) scheme was proposed to
avoid assigning frame sizes arbitrarily [32]. RR-AF is based on the amount of service
that a buffers gets. Each time a VOQ (or a CPB at an output) is selected by the arbiter,
the VOQ gets the right to forward a frame, where a frame is formed by one or more
cells. Each cell of a frame is dispatched in one time slot. The RR-AF scheme can
achieve near 100% throughput under admissible uniform and nonuniform traffic.

In RR-AF, each VOQ (and CPB) has two counters: a frame-size counter,
( ), and a current service counter, ( ). The value of ( ), | ( )|,
indicates the frame size; that is, the maximum number of cells that can
send in back-to-back time slots to the buffered crossbar, one cell per time slot. The
initial value of | ( )| is one cell (i.e. its minimum value). It is considered that
| ( )| can be as large as needed, although practical results have shown that
its value is not large. ( ) counts the number of serviced cells at time slot
in a frame corresponding to a VOQ, where the frame size is indicated by FSC, in a
regressive fashion. A regressive-fashion count is used in CSC as CSC only considers
FSC at the end of a serviced frame. The initial value of ( ), | ( )|, is
one cell (i.e. its minimum value).

The input arbitration process works as follows. An input arbiter selects an eligi-
ble 0 in round-robin fashion, starting from the pointer position . For the
selected 0 , if | 0( )| 1, | 0( + 1)| = | 0( )| 1,
and the input pointer remains at 0 , so that this VOQ has the higher pri-
ority for service in the next time slot and the frame transmission can continue. If
| 0( )| = 1, the input pointer is updated to ( 0 + 1)mod( ), | 0( )| is
increased by cells, and | 0( )| = | 0( )|. For any other , where
6= 0, which is empty or inhibited by the flow-control mechanism, and it is posi-

tioned between the pointed and the selected 0 : if | ( )| 1,
| ( + 1)| = | ( )| 1. If there exist one or more VOQs that fit the
description of at a given time slot, it is said that those VOQs missed a ser-
vice opportunity at that time slot. The increment of the frame size, done by cells, is
performed each time the previous complete frame of a VOQ has been serviced. For
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the sake of clarity, the following pseudo-code describes the input arbitration scheme,
as seen at an input:

-At time slot , starting from the pointer position , find the nearest eligible 0

in a round-robin fashion.
-Send the HOL cell from 0 to 0 time slot + 1.

If | 0( )| 1 then
| 0( + 1)|=| 0( )| 1,
the pointer points to j’.

else | 0( + 1)| = | 0( )|+ ,
| 0( + 1)| = | 0( + 1)|,
the pointer points to (j’+1) module N.

-For VOQ(i, h), where 0 for 0, or 0 0 and 1 for
0:

( + 1) = ( ) 1.3
-Go to the next time slot.

Note that may be equal to a constant or a variable value. In general, assumes
the finite value of , unless otherwise stated. The value of affects the performance
of RR-AF in different traffic scenarios. Note that when = 0, RR-AF becomes RR.

Figure 6.12 shows an example of the adjustment of in an input of a 4×4
switch. In this example, 2 and 3 have cells (as Figure 6.12(a) shows),
one and three, respectively, and no VOQ is inhibited by the flow-control mechanism.
At time slot , the pointer of RR-AF points to 0. During this time slot, the
input arbiter selects 2 to send a cell to the buffered crossbar. Then, 0

and 1 miss an opportunity to send cells as they are empty and their FSCs are
decreased by one at the end of the time slot. Note that 0 and 1 are
considered for this time slot as defined in the description of RR-AF. Table
8.1 shows the evolution of the FSC values for each VOQ during 6 time slots. In the
next time slot, + 1, 2 is served, and it becomes empty. As the pointer points
to this VOQ, 2 is decreased to 1 in the next time slot. Therefore, the arbiter
selects 3 at time slot + 2 as the next VOQ to receive service. Then, the
pointer is moved to 3. At time slot + 3, 3 is again selected. Since the
last frame cell of 3 is selected, 3 is updated to 2 + = 2 + 4 = 6.
However, since there are no more cells in this VOQ, 3 decreases by one in the
subsequent time slots. In this table, a dash in time slots +4 and +5means that no

is selected. Figure 6.12(b) shows the order in which cells are served.
RR-AF delivers 100% throughput under uniform traffic. It also has an average

cell delay close to that of an OB switch, as RR selection does. Furthermore, RR-AF
shows no measurable improvement under uniform traffic with Bernoulli arrivals and
with different CPB sizes.

However, the efficiency of RR-AF can be better appreciated under unbalanced
traffic, as RR-AF, with a CPB size of one cell can provide better performance (higher
3 Note that when 0 = , there is no ( ).
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Figure 6.12. Example of VOQs and their FSC values in a 4× 4 switch with RR-AF

Table 6.1. Evolution of FSC of example in Figure 6.12

Time slot
FSC + 1 + 2 + 3 + 4 + 5

0 2 1 1 1 1 1
1 2 1 1 1 1 1
2 2 2 1 1 1 1
3 2 2 2 6 5 4

Selected 2 3 3 3 - -

throughput) than RR with a CPB size of 32 cells in a 32 × 32 switch. Figure 6.13
shows the simulation results of RR-AF.

Round-robin with Frame-size Occupancy-based (RR-FO) Arbitration

The round-robin with frame-size occupancy-based arbitration (RR-FO) scheme was
proposed in [33]. The scheme is also round-robin based. A new frame is assigned
a size, in number of cells, each time the previous frame is serviced. The frame size
is determined by the cell occupancy of the VOQ at the time the frame service com-
pletes. This is called captured-frame size. A VOQ is said to be in on-service status if
the VOQ has a frame size of two or more cells and the first cell of the frame has been
transmitted. An input is said to be on-service if there is at least one on-service VOQ.
A VOQ is said to be off-service if the last cell of the VOQ’s frame has been sent, or
no cell of the frame has been sent to the buffered crossbar. At time of selecting
the last cell of a frame of ( ), the next frame is assigned a size equal to the
occupancy of ( ). Cells arriving at ( ) at any time , where

, are considered for selection until the current frame is totally served and they are
included in a new captured frame.

For each VOQ, there is a captured frame-size counter, ( ). The value of
( ), | ( )| indicates the frame size, that is, the maximum number of cells

that a ( ) has as candidates in the current and future time slot, one per time
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Figure 6.13. Throughput performance of round-robin-based schemes under unbalanced traffic

slot. | ( )| takes a new value when the last cell of the current frame of ( )
is selected. | ( )| decreases its count each time a cell is selcted, other than the
last.

The input arbitration process works as follows: input arbiter selects an eligible
on-service VOQ in round-robin order, starting from its pointer position. If no on-
service VOQ is present, an off-service VOQ is selected in round-robin order.

• If the input arbiter selects ( ) and if | ( )| 1 : | ( +
1)|=| ( )|-1 and this VOQ is set as on-service.

• Else (i.e. | ( )|=1): | ( + 1)| is assigned the occupancy of ( ),
and ( ) is set as off-service. The pointer at the input arbiter then moves
to one position beyond the accepted ( ): to the next output or ( + 1)
module .

The output arbitration process is the round-robin selection with pointer persis-
tency. After ( ) has been selected by the output arbiter, the output pointer
keeps pointing to input .

RR-FO, as RR and RR-AF, provides 100% throughput and an average cell delay
close to that of an OB switch under uniform traffic. Under unbalanced traffic, RR-
FO gives similar performance to that of RR-AF. Figure 6.13 shows the throughput
of RR-AF, RR-FO, and RR under unbalanced traffic.

The switch with RR-AF and RR-FO uses a CPB size of one cell, and the RR uses
a CPB size of one and 32 cells, respectively. As an example, RR, with 32-cell CPBs
and a cell size of 64 bytes, would need 16 Mb of memory, while RR-AF or RR-FO,
with 1-cell CPBs, would need 512 Kb of memory. In addition, RR-AF and RR-FO
provide higher performance than RR.
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6.5 CICB Switches with Internal Variable-length Packets

The switches discussed so far perform internal transmission of fixed-size pack-
ets, called cells. In this section, we discuss a different approach: the switching of
variable-size packets. Therefore, switches for variable length packets do not perform
segmentation and re-assembly of packets.

Using cells internally in a switch requires that padding bytes be transferred when
a packet length is not evenly divisible by the cell length. In the worst case, there
could be cells with a size of bytes and an incoming packet with size of + 1
bytes. To transmit this packet, two time slots would be needed. Therefore, to maintain
wirespeed transmission, an internal speedup of 2 +1, which is approximately 2,
is needed [34], if no sophisticated segmentation is used.

A segmentation mechanism in which each segment contains data from different
packets, is considered in [35]. In this way, padding bytes are no longer needed and a
CICB can keep up with wirespeed transmission without the need for speedup.

A CICB switch using parallel polling was used to switch variable-length packets
[36]. This switch used a round-robin order for polling VOQs and CPBs at the inputs
and outputs, respectively. The performance of this switch was compared to that of
SLIP in an IB switch. The results also showed that CICB switches have higher

performance (lower average packet delay) than IB switches.
Another example of a CICB for variable-length packets was presented in [37],

where the implementation of such a switch is discussed in detail. This switch also
uses round-robin selection for input and output arbitration.

6.6 Output Emulation by CICB Switches

The OB switch is often considered as the ideal packet switching architecture for pro-
viding quality-of-service (QoS) guarantees. If a switch can exactly emulate an OB
switch, it means the switch can provide the same throughput as an OB switch. OB
switch emulation often requires a shadow OB switch to determine the correct depar-
ture time of every cell in the switch. A shadow OB switch is defined as a theoretical
OB switch that determines the departure order and time of each cell from a buffered
crossbar to exactly emulate an OB. OB emulation implies the use of some other
type of switch such as IB, CIOB, and CICB to emulate an OB in order to evaluate
performance.

In [38], it was shown that a speedup of 4 is sufficient for a CIOB to exactly
emulate an OB switch with the scheduling policy "most urgent cell first" (MUCF).
However, with a speedup of 2, a CIOB behaves identically like an OB, and a speedup
of 2 1 with a scheme named "critical cell first" (CCF) is sufficient to mimic a
FIFO-OB switch [39].

In [40] and [41], it was shown that a CICB switch with a speedup of 2 can mimic
a FIFO-OB switch with any arrival traffic pattern. This is called combined input-
crosspoint-output buffered (CICOB) [28]. In [39], it was proven that with a weighted
round-robin scheduler, a CICOB can achieve 100% throughput and can mimic an OB
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Figure 6.14. × buffered crossbar with output queues

switch with a speedup of 2 for admissible traffic. Note that [39] and [40] require that
the buffered crossbar switches work with a speedup of 2, where the switches have
output queues.

The following terms are defined to sketch the proof:
Time to leave TTL(c) is the time slot during which cell departs as specified by

the shadow OQ switch.
Input priority list (IPL): each input scheduler maintains an input priority list of

all cells queued at input . The IPL of an input scheduler determines the departure
order of cells from the input to the internal buffers.

Output priority list (OPL): each output scheduler maintains an output priority
list of all cells queued at output .

Input thread IT(c) is the number of cells ahead of in its input priority list;
IT( ) is defined for each cell queued at an input port. IT( ) may decrease by one
during a scheduling phase and may increase by one during the arrival phase. When a
cell is transferred from the input queue to the crosspoint, IT( ) is set to zero.

Output cushion OC(c) is the number of cells at ’s output queue with lower
TTL than . OC( ) may increase by one during a scheduling phase and decrease by
one during the departure.

Slackness equals the output cushion of cell minus its input thread, which is
L( )=OC( ) IT( ). The slackness reflects the urgency with which the switch must
transfer the cell to its output. These terms are exemplified in a CICOB switch, as
show in Figure 6.15.

The OB emulation process is highly influenced by the slackness of every cell
inside the system. Any increase in L( ) is translated by either an increase in OC( )
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or decrease in IT( ). In both cases, L( ) increases, and thus will reach its output on
time. Any decrease in L( ) is translated by either a decrease in OC( ) or an increase
in IT( ). In both cases, L( ) decreases, and should be urgently transferred to its
output queue before it misses its time to leave. As a result, in order for OB emulation
to occur, the slackness of every cell inside the switch is always positive and non-
decreasing.

A CICOB switch with a speedup of 2 can exactly emulate an OB switch. With a
speedup of 2, each time slot is divided into the following four phases.

1. Arrival phase: all arriving cells are received and inserted in an input queue.
2. First scheduling phase selects and transfers cells from the crosspoint queue to the

output queues, and from input queues to the crosspoint queues.
3. Second scheduling phase selects and transfers cells from the crosspoint queue to

the output queues, and from input queues to the crosspoint queues.
4. Departure phase: all departures from the output queues occur in this phase.

Each scheduling phase contains two operations:
(a) Input scheduling: the input scheduling algorithm selects the highest priority

cell whose associated flow-control state is 0 from each input’s IPL and transfers the
cell to the crosspoint buffer.
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(b) Output scheduling: the output scheduling algorithm selects the highest prior-
ity cell according to the output’s OPL and transfers the cell to the output.

At each time slot, every cell can be in one of the following states: just arrived;
selected for input scheduling; not selected for input scheduling (blocked by a flow
control); selected for output scheduling; selected for output scheduling (blocked by
a more urgent cell) or depart the switch. The OB emulation occurs if, irrespective of
its status, any cell has non-negative slackness.

For any new arriving cell, the slackness is proved to be non-negative. This prop-
erty is called non-negative slackness insertion. If cell departs to the output queue in
the next time slot, we are no longer concerned with L( ). If cell remains, L( ) in-
creases by at least one in each scheduling phase. During the departure phase, OC( )
decreases by at most one and IT( ) remains unchanged, implying that L( ) may de-
crease by 1. During the arrival phase, IT( ) increases by at most 1, and OC( ) remains
unchanged, implying that L( ) may decrease by one. Summing over the four phases,
L( ) does not decrease from time slot to time slot +1.

In a FIFO OB switch, a newly arriving cell always has a higher TTL than all cells
previously arrived from the same VOQ, and the TTL assigned to the arriving cell
remains fixed until the cell departs. In order to emulate a FIFO-OB switch, [40] and
[41] proposed different input/output scheduling schemes such as
and , respectively. By the input insertion algorithm named group-
by-virtual-output-queue (GBVOQ) upon arrival, if the input VOQ is empty, the cell
is placed at the front of IPL; otherwise, the cell is placed in an IPL position just
behind the last cell for the VOQ in the IPL. The OPL for each output is ordered by
OCF. In fact, both of them attempt to prove a CICOB switch with their scheduling
scheme and a speedup of 2 satisfies the NNS insertion property and a non-decreasing
slackness from a time slot to the next; therefore, they can exactly emulate a FIFO-OB
switch.

Theoretical analysis has shown that it is possible to emulate an OB switch using
a CICOB switch with a speedup of 2 and a suitable scheduling scheme. However, the
implementation complexity of the proposed schemes is still too high to be practical.

6.7 Conclusions

This chapter presents an overview of internally buffered crossbar switches as a feasi-
ble and attractive alternative to high-performance packet switches for the next gener-
ation networks. This type of switch requires that memory works at the same speed as
that for IB switches to provide high switching performance. Most internally buffered
switches have been shown to outperform IB switches and to emulate OB switches
with a speedup no more than 2. Therefore, internally buffered switches result in an
economic and efficient solution to the implementation of packet switches. Issues re-
maining for future research include the provisioning of guaranteed services using
internally buffered crossbar switches and the resolution of scalability issues. As line
rates continue to increase and memory speedup falls behind, new architectures with
more memory-efficient strategies will be needed.
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The generalized switch is a model of a queueing system in which parallel servers are
interdependent and have time-varying service capabilities. It includes as special cases
the model of data scheduling in a wireless network and the input-queued crossbar
switch model. A finite set of queues (users) are served in discrete time by a switch.
Switch state follows a discrete-time, finite-state Markov chain. At each time slot ,
the switch can choose a scheduling decision from a finite set , which captures
the interdependency among the servers specifying which subsets of servers can be
active simultaneously. Each scheduling decision has the associated vector of service
rates ˜ ( ( )) at which queues are served, where ( ) denotes the switch state at
time .

This article considers the dual scheduling algorithm that uses rate control and
queue-length based scheduling to allocate resources for a generalized switch. We
first consider a saturated system in which each user has an infinite amount of data to
be served. We prove the asymptotic optimality of the dual scheduling algorithm for
such a system, which says that the vector of average service rates of the scheduling
algorithm maximizes some aggregate concave utility functions. As the fairness ob-
jectives can be achieved by appropriately choosing utility functions, the asymptotic
optimality establishes the fairness properties of the dual scheduling algorithm. We
next consider a system with exogenous arrivals, i.e. data flows of finite size arrive
at the system randomly. For such a system, we propose a modified dual scheduling
algorithm that stabilizes the system whenever the input rates are within the feasible
rate region and is then throughput-optimal, i.e. achieves 100% throughput.

The dual scheduling algorithm motivates a new architecture for scheduling, in
which an additional queue is introduced to interface the user data queue and the
time-varying server and to modulate the scheduling process, so as to achieve different
performance objectives. Further research would include scheduling with Quality of
Service guarantees with the dual scheduler, and its application and implementation
in various versions of the generalized switch model.
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7.1 Introduction

We consider a general model where a set of queues (users) are served in discrete
time by a generalized switch, as defined in [1]. The generalized switch can be viewed
as a discrete-time, interdependent parallel server system. The servers are interdepen-
dent in that they cannot provide service simultaneously, and the dependency among
them is reflected on the constraints that specify which subsets of servers can be active
at the same time. Switch state follows a discrete-time, finite-state Markov chain.
At each time slot , the switch can choose a scheduling decision from a finite
set , which captures the constraints imposed by the interdependency among the
servers. Each scheduling decision has the associated vector of service rates ˜ ( ( ))
at which queues are served, where ( ) is the switch state at time .

The generalized switch model has many applications in communication net-
works. For example, in cellular networks in the downlink, servers correspond to the
wireless links from the base stations to the users, and the constraint is that each
base station can transmit to at most one of the users and each user can be served
by at most one of the base stations in each time slot [2, 3]. Other examples include
multi-hop wireless networks where each wireless link can be viewed as a server and
the constraints disallow simultaneous transmission of neighboring links due to in-
terference [4–6]. It also includes as a single-state special case input-queued crossbar
switch where a server corresponds to each input–output port pair, and the constraint
is that each input port transmits to exactly one of the output ports and each output
port receives from exactly one of the input ports at any time [7]. The same model can
extend to handle the packet switch in wireless network, where the switch state (i.e.
wireless line rates) is supposedly time-varying.

For such a generalized switch system with time-varying state, the service rate
that can be offered to the users (queues) is both user-dependent and time-dependent.
This, on one hand, opens up the possibility to use state-aware scheduling strategies,
i.e. to exploit service variations to increase the throughput. On the other hand, the
parallel servers are interdependent, and to serve (schedule) always the user with the
highest potential rate maximizes overall throughput but usually results in the starva-
tion of some users. So, we need to trade off throughput for fairness. However, the
time-varying nature of the generalized switch, coupled with the user-dependent ser-
vice rate and unknown data arrival, makes it very challenging to design scheduling
policies to fulfil fairness and throughput requirements, as well as other performance
objectives.

There exists lots of work on scheduling with different performance objectives for
different versions of the generalized switch model. For fair scheduling, in the context
of cellular network in the downlink, one of the principal policies is the Proportional
Fair Scheduler of Qualcomm High Data Rate system [2,3], which schedules the user
with the largest ratio of the current achievable rate to the exponentially smoothed
throughput. This scheduling algorithm has been shown to maximize the sum of the
logarithm utilities of the long-run average data rates provided to the users [8–10],
and thus achieve proportional fairness [11]. The generalization of the proportional
fair scheduling algorithm to any concave utility function for a generalized switch has



www.manaraa.com

Dual Scheduling Algorithm in a Generalized Switch 149

been studied1 [12]. Other work on fair scheduling includes [13–15]. For throughput-
optimal scheduling that attains the maximum stability region of the system, one of
the principal policies is MaxWeight scheduling in the context of wireless networks
[4–6,16–19], and in the context of input-queued switches [7]. The stability region of
a scheduling policy is the set of mean flow rate vectors such that the queue-length
process is stable under this policy. The throughput-optimal scheduling has its origin
in [4–6], where it is shown that allocating resources to maximize a queue-length-
weighted sum of rates is a stabilizing policy under any sustainable flows. However,
there is no fairness guarantee with throughput-optimal scheduling.

In this article, we study the dual scheduling algorithms for the generalized switch
(see [20] for preliminary results in the context of cellular networks in the downlink).
These algorithms are motivated by the dual subgradient algorithm of convex opti-
mization problems [21,22]. With an additional queue (termed M-queue) being intro-
duced for each user, the dual scheduling algorithm is a combination of rate control (of
the M-queue) and M-queue-length-based scheduling. The rate control algorithm is
motivated by utility framework for TCP congestion control [23,24], which shows that
various TCP congestion control protocols can be interpreted as distributed primal-
dual algorithms to solve aggregate network utility maximization. The queue-length-
based scheduling takes the form of a simple throughput-optimal scheduling. As such,
while the queue-length-based scheduling part keeps maximizing the throughput, the
rate-control part modulates the scheduling process by choosing appropriate utility
functions, so as to achieve various performance objectives.

Section 7.2 presents details of the system model and the dual scheduling algo-
rithm for the generalized switch. In Section 7.3, we consider a saturated system in
which each user has an infinite amount of data to be served. For such a system,
fairness among the users is presumably the most important concern. We present a
dual scheduling algorithm, which extends the algorithm studied in [25], and prove
its asymptotic optimality, which says that the vector of average service rates of the
scheduling algorithm maximizes some aggregate concave utilities of the users. As is
well known, the fairness objectives can be achieved by choosing the utility functions
appropriately. So, the asymptotic optimality establishes the fairness properties of the
dual scheduling algorithm.

We next consider in Section 7.4 the system with exogenous arrivals, i.e. data
flows of finite size arrive at the system randomly. For such a system, one of the per-
formance properties of particular concern for any scheduling algorithm is its stabil-
ity rate region within which the flows can be stably supported and the response time
remains finite. We consider the traffic at flow level, but include packet-level dynam-
ics, i.e. the precise operation of the scheduling mechanism. We propose another dual
scheduling algorithm and show that it stabilizes the system whenever the arrival rates
are within the feasible rate region and is then throughput-optimal. Compared with
other throughput-optimal scheduling policies, the dual throughput-optimal schedul-
ing algorithm provides some weighted fairness among the users at flow level.
1 We call this type of scheduling policy a primal scheduling algorithm, since it can be seen

as a gradient algorithm to solve the concave utility maximization problem directly.
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The dual scheduling algorithm motivates a new architecture for scheduling in
the generalized switch, in which an additional queue is introduced to interface the
user data queue and the time-varying server and to modulate the scheduling process,
so as to achieve different performance objectives such as fairness, and maximum
throughput, etc. In Section 7.5, we will briefly discuss some implementation issues
and advantages of the dual scheduler, and Quality of Service scheduling in general-
ized switches.

7.2 System Model

We consider a queueing system where a finite set of parallel queues (users), in-
dexed by , are served by a generalized switch. The generalized switch can be ab-
stracted as an interdependent parallel server system. The servers are interdependent
in that they cannot provide service simultaneously, and the dependency among them
is reflected on the constraints that specify which subsets of servers can be active
at the same time. For convenience, we use a “dependency” graph to capture this
interdependency. Each vertex in represents a server, and an edge between two ver-
tices means the corresponding servers cannot be active simultaneously. Thus, only
those servers in an independent set2 of the dependency graph can be active at the
same time. We denote the set of independent sets by , with each element indexed
by .

The system operates in discrete time = 0 1 2 · · · . By convention, we choose
the duration of a time slot as the unit of time, and identify time with the unit time
interval [ + 1). The switch has a finite set of states. The switch state is fixed
in one of the states within a time slot but varies across slots according to an
irreducible finite-state Markov chain. Corresponding to the switch state , the service
rate to user is ( ) packets per time slot when the switch servers only , and the
service rate vectors ˜ ( ) that can be offered to the users are

˜ ( ) =

½
( ) if
0 otherwise

By standard time-sharing argument, the feasible rate region ( ) in switch state
is defined to be the convex hull of these rate vectors [26]

( ) :=

(
˜ : ˜ =

X
=1

˜ ( ) 0
X
=1

= 1

)
(7.1)

where we slightly abuse the notation and let also denote the size of the set .
Let the switch state distribution be ( ), we further define the mean feasible rate
(capacity) region as
2 An independent set of vertices is defined as a set of vertices that have no edges between

each other. An empty set is an interdependent set.
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Figure 7.1. The architecture of the dual scheduler

=

(
: =

X
( ) (̃ ) (̃ ) ( )

)
(7.2)

This mean rate region is a closed convex set, and is the best feasible rate region the
system can support on average.

7.2.1 Queue Length Dynamics

Figure 7.1 shows the architecture of the dual scheduler from the perspective of one
user. The system keeps separate data queues for the users to buffer the data intended
to them. In addition, another queue, called M-queue, is introduced for each user. The
M-queue interfaces the data queue and the time-varying server, in that the data will
depart from the data queue to enter the M-queue, and the server will directly serve
the M-queue.

Denote the size of the data queue and M-queue for user at the beginning of the
time slot by ( ) and ( ) respectively, the number of arrivals to the data queue
and M-queue of user in time slot by ( ) and ( ) respectively, and the amount
of service offered to the M-queue of user in time slot by ( ). The evolutions of
the data queue and M-queue length for user are given by

( + 1) = ( ) + ( ) ( ) (7.3)
( + 1) = [ ( ) + ( ) ( )]+ (7.4)

where ‘+’ denotes the projection onto the set <+ of non-negative real numbers.
We further introduce a small parameter 0, and for convenience, define a new

quantity ( ) = ( ) for each user . In Section 7.3 we will see that character-
izes the asymptotic optimality and fairness of the dual scheduling algorithm. We call

the scaled queue-length, since it is the M-queue length scaled by . By Equation
(7.4), the evolution of the scaled queue-length is given by

( + 1) = [ ( ) + ( ( ) ( ))]+ (7.5)
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With the dual scheduling algorithm, the system controls the arrival rate into the M-
queues and determines service rates offered to the M-queues based on queue-length.

7.2.2 Dual Scheduling Algorithm

We assume that each user attains a utility ( ) when its arrival rate at the M-
queue is packets per time slot. (·)may be dependent of data queue size , but
is assumed to be continuously differentiable, increasing and strictly concave with
respect to . In time slot , given the current M-queue length ( ), the maximal
arrival rate to the M-queue of user is specified as follows:

( ) = min
n

0 1
( ( ))

o
= min

n
0 1
( ( ))

o
(7.6)

where max ( ) is the upper bound specified on the arrival rate, and thus
( ) maximizes ( ) over 0 . Note that we choose a packet of

equal length to the unit of data. will be rounded to the closest integer automati-
cally.

We now consider service allocation. In time slot , given the current M-queue
length ( ), the switch selects a (physical) service rate vector3

( ) arg max
( ( ))

( ) = arg max
( ( ))

( ) (7.7)

where we will always pick an extreme point maximizer4. Equation (7.7) takes the
form of simple throughput-optimal scheduling as proposed in [4, 5], which sched-
ules the transmissions dynamically based only on current system backlog and switch
state.

Equations (7.3)–(7.7) define the dual scheduling algorithm. When the M-queue
length process is stable, will be the service rate offered to user . This scheduling
algorithm can be seen as motivated by the dual subgradient algorithm of the con-
cave maximization problem max

P
( ), and is a combination of rate control

[23, 24] and queue-length-based scheduling. As the queue-length-based scheduling
part keeps maximizing the throughput, the rate-control part modulates the schedul-
ing process by choosing appropriate utility functions, so as to achieve various per-
formance objectives.

Given a scheduling algorithm, two important issues that need to be addressed
are to characterize its fairness property and its stability region. The fairness property
governs resource allocation among the competing users, and the stability region de-
termines the efficiency of the scheduling algorithm as a whole. We will study them
in the next two sections, respectively.
3 We call the service rate allocated to the M-queue the physical service rate, in order to

distinguish from the service rate received by the user data queue which will be if M-
queue is table.

4 A point in a convex set is an extreme point if it cannot be written as a convex combination
of other points in the convex set.
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7.3 Asymptotic Optimality and Fairness

In this section, we consider a saturated system in which each user has an infinite
amount of data to be served, i.e. the user data queue is infinitely backlogged. So, the
data queue is irrelevant and the choice of utility function (·) is independent of .
We will show that the dual scheduling algorithm maximizes some aggregate concave
utilities and establish its fairness properties through its asymptotic optimality.

7.3.1 An Ideal Reference System

Before proceeding, let us first define an ideal reference system problem:

max
0 0

X
( ) (7.8)

subject to & (7.9)

The first constraint says that the arrival rate at the M-queues should not exceed the
physical service rate. The second constraint says that the physical service rate should
be in the mean rate region, which is the best feasible rate region the system can
support. We will characterize the performance of the dual scheduling algorithm with
respect to this reference system.

Proposition 1. The solution to problem (7.8),(7.9) exists and is unique.

Proof. The proof is trivial, since the objective function is strictly concave and the
constraint set is a closed, convex set [21].

Consider the dual problem of the reference system problem (7.8)-(7.9)

min
0
( ) (7.10)

with partial dual function

( ) = max
0 0

X
( ) ( ) (7.11)

subject to (7.12)

where we relax only the constraint by introducing Lagrange multiplier .

Proposition 2. The solution to dual problem (7.10) exists. Moreover, there is no
dual gap between the primal problem (7.8),(7.9) and the dual problem (7.10).

Proof. The proof is trivial, since problem (7.8),(7.9) is a convex optimization prob-
lem [21].
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Having established the properties of the ideal reference system problem and its
dual, in the next subsection we will characterize the dual scheduling algorithm with
respect to them.

Remark 1: Roughly speaking, the primal scheduling algorithm is a scheduling
policy whose vector of average service rates solves the problem

max
0

X
( )

subject to

This problem is equivalent to problem (7.8),(7.9), since mathematically can be seen
as an auxiliary variable. The primal scheduling algorithm can be seen as being moti-
vated by the gradient algorithm to solve this problem [12], while the dual scheduling
algorithm can be seen as being motivated by the dual gradient algorithm to solve the
same problem.

7.3.2 Stochastic Stability

Note that M-queue length ( ) (and scaled queue-length ( )) evolves according to a
discrete-time, discrete-space Markov chain. We first show that this Markov chain is
stable, i.e. the queue-length process reaches a steady state and does not go unbounded
to infinity. It is easy to check that the Markov chain has a countable state space, but
is not necessarily irreducible. In such a general case, the state space is partitioned in
transient set and different recurrent classes . We define the system to be stable if
all recurrent states are positive recurrent and the Markov process hits the recurrent
states with probability one [4]. This will guarantee that the Markov chain will be
absorbed/reduced into some recurrent class, and the positive recurrence ensures the
ergodicity of the Markov chain over this class.

Theorem 1. The Markov chains described by Equations (7.4) and (7.5) are stable.

Proof. Consider the the Lyapunov function ( ) = k k22. By Equations (7.5)–
(7.7) and defining ( ) = ( ) ( ), we have

[ ( )| ] = [ ( ( + 1)) ( ( )) | ( ) = ]

= [ ([ ( ) ( ( ))]+) ( ( )) | ( ) = ]

[ ( ( ) ( ( ))) ( ( )) | ( ) = ]

= [ ( ( )) (2( ( ) ) ( ( ))) | ( ) = ]

= 2 ( ) ( ) + 2 [k ( ( ))k22 | ( ) = ]

2 ( ) ( ) + 2 2

where is the upper bound of the norm of ( ( )), and

( ) = ( ) ( ) with ( ) argmax (7.13)
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It is easy to check that ( ) is a subgradient5 of the dual function ( ) at point ,
thus

( ) ( ) ( ) ( )

So,

[ ( )| ] 2 ( ( ) ( )) + 2 2

Note that ( ) is a continuous function. Let

= max
( ) ( ) 2

k k2

and define A = { : k k2 }. We can get

[ ( )| ] 2 2I A + 2 2I A

where I is the index function. Thus, by Theorem 3.1 in [4], which is a trivial exten-
sion of Foster’s criterion for irreducible chain [27], the Markov chain ( ) is stable.
Since the M-queue length ( ) = ( ), the Markov chain ( ) is also stable.

The above proof shows that the distance to the optimal has negative condi-
tional mean drift for all scaled queue-lengths that have sufficiently large distance
to , and implies that the scaled queue-length will stay near when is small
enough.

Remark 2: We can make the Markov chain ( ) irreducible over its state space,
by making the arrival ( ) a random variable with meanmin{ 0 1

( ( )) }, as
assumed in [25]. We can also make the system reach a specific state infinitely often
with finite mean recurrence times, which will ensure that the system reduces to one
recurrent class whatever the initial state is.

7.3.3 Asymptotic Optimality and Fairness

In this subsection, we will prove the asymptotic optimality of the dual scheduling
algorithm in terms of dual and primal functions of the reference system problem
(7.8),(7.9).

Theorem 2. The dual scheduling algorithm (7.4)–(7.7) converges statistically to
within a small neighborhood of the optimal value ( ), i.e.

( ) ( [ ( )]) ( ) + 2 2 (7.14)

where ( ) is notation used to denote the state of the Markov chain ( ) in the
steady state.
5 Given a convex function : R 7 R, a vector R is a subgradient of at a point

R if ( ) ( ) + ( ) R [21, 22].
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Proof. The first inequality ( ) ( ) always holds, since ( ) is the mini-
mum of the dual function ( ).

Now we prove the second inequality. From the proof of Theorem 1, we have

[ ( )| ] = [ ( ( + 1)) ( ( )) | ( ) = ]

2 ( ( ) ( )) + 2 2

Taking expectation over , we get

[ ( )] = [ ( ( + 1)) ( ( ))]

2 ( ( ) [ ( )]) + 2 2

Taking summation from = 0 to = 1, we obtain

[ ( ( ))] [ ( (0))] 2
1X

=0

[ ( ( ))] + 2 ( ) + 2 2

Since [ ( ( ))] 0, we have

2
1X

=0

[ ( ( ))] 2 ( ) [ ( (0))] + 2 2

>From this inequality we obtain

1
1X

=0

[ ( ( ))] ( )
[ ( (0))] + 2 2

2

Note that ( ) is stationary and ergodic in some steady state by Theorem 1, and so is
( ( )). Thus,

lim
1

1X
=0

[ ( ( ))] = [ ( ( ))]

So,

[ ( ( ))] ( ) 2 2

Since ( ) is a convex function, by Jensen’s inequality,

( [ ( )]) ( ) 2 2

i.e. the algorithm converges statistically to within 2 2 of the optimal value ( ).

Since ( ) is a continuous function, Theorem 2 implies that the scaled queue-
length approaches statistically when is small enough.
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Corollary 1. ( ) is a stable Markov chain. Moreover, the average arrival rates
[ ( )] , where ( ) denotes the state of the process ( ) in the steady state.

Proof. ( ) is a deterministic, finite-value function of ( ). ( ) is a stable Markov
chain, since ( ) is. [ ( )] , otherwise the average scaled queue-length
[ ( )] will go unbounded, which contradicts Theorem 2.

Theorem 3. Let ( ) be the primal function of the reference system problem (7.8),(7.9).
The dual scheduling algorithm (7.4)–(7.7) converges statistically to within a small
neighborhood of the optimal value ( ), i.e.

( ) ( [ ( )]) ( )
2

2
(7.15)

Proof. The first inequality ( ) ( [ ( )]) holds, since [ ( )] .
Now we prove the second inequality. By Equation (7.5), we have

[|| ( + 1)||22| ( )]
= [||[ ( ) ( ( ))]+||22| ( )]

[|| ( ) ( ( ))||22| ( )]
= || ( )||22 2 ( ( )) ( ) + 2 [|| ( ( ))||22| ( )]
= || ( )||22 + 2

X
( ( )) 2

X
( ( ( )) ( ) ( ))

2
X

( ) ( ) + 2 [|| ( ( ))||22| ( )]

|| ( )||22 + 2
X

( ( )) 2
X
( ( ) ( ) )

2
X

( ) ( ) + 2 [|| ( ( ))||22| ( )]

= || ( )||22 + 2 ( ( )) 2 ( )

2
X

( )( ( ) ) + 2 [|| ( ( ))||22| ( )]

|| ( )||22 + 2 ( ( )) 2 ( ) + 2 [|| ( ( ))||22| ( )]
|| ( )||22 + 2 ( ( )) 2 ( ) + 2 2

where ( ) is defined as in Equation (7.13). The second inequality follows from the
fact that ( ) is the maximizer of max ( ( ) ), and the third inequality
follows from the fact that ( ) is the maximizer in Equation (7.13) and .

Taking expectation over , we get

[|| ( + 1)||22] [|| ( )||22] + 2 [ ( ( ))] 2 ( ) + 2 2

Applying the inequalities recursively, we obtain
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[|| ( )||22] [|| (0)||22] + 2
1X

=0

( [ ( ( ))] ( )) + 2 2

Since [|| ( )||22] 0, we have

2
1X

=0

( [ ( ( ))] ( )) [|| (0)||22] 2 2

>From this inequality we obtain

1
1X

=0

[ ( ( ))] ( )
[|| (0)||22] 2 2

2

Note that ( ) is stationary and ergodic in some steady state by Corollary 1. Thus,

lim
1

1X
=0

[ ( ( ))] = [ ( ( ))]

So,

[( ( ( ))] ( )
2

2

Since is a concave function, by Jenson’s inequality,

( [ ( )]) ( )
2

2

i.e. the algorithm converges statistically to within 2 2 of the optimal value ( ).

Since ( ) is a continuous function, Theorems 3 implies that the average arrival
rates at the M-queues approaches the optimal of the ideal reference system (7.8),(7.9)
when is small enough. Note that, when the M-queue length is stable, will be
the service rates offered to the users. Theorems 2 and 3 show that, surprisingly, the
vector of average service rates offered by the dual scheduling algorithm (7.4)–(7.7)
approximately solves the ideal reference system problem, which is to maximize the
aggregate concave utilities over the best feasible rate region that the network can
support.

As is well known, the fairness objectives can be achieved by choosing the con-
cave objective functions appropriately. So, the asymptotic optimality establishes the
fairness properties of the dual scheduling algorithm. For example, if we choose loga-
rithm utility function ( ) = log( ), the dual scheduler will achieve proportional
fairness [11, 25].
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7.4 Throughput-optimal Scheduling

The results presented in the previous section assume a saturated system in which
each user has an infinite amount of data to be served. In reality, however, data flows
of finite size arrive at the system for each user according to some arrival process. For
such a system, one of the properties of particular concern for a scheduling algorithm
is its stability rate region within which the flows can be stably supported and the
response time remains finite, since it characterizes the throughput performance of the
scheduling algorithm as a whole. In this section, we will consider a scheduling policy
which maximizes the system throughput while providing some weighted fairness
among users at flow level.

We will model the traffic in the system at the level of flows. We assume that the
arrival process of data flows for each user is a stationary point process with intensity

, and the size of the flows to be served is drawn independently from a general
distribution with mean 1 and finite second moment. We denote by =
the traffic intensity offered to user . The data queue length (unfinished work) ( )
is a stochastic process which increases as new flows come and decreases as date
is transferred into the M-queues. We are concerned with the stability of ( ), and
derive conditions on the traffic intensity for which, starting from any initial state,
the amount of data (or number of flows) to be served remains finite with probability
1. Obviously, the following condition is necessary

int( ) (7.16)

where int( ) denotes the interior of convex set . This condition for stability is not
sufficient for general scheduling policies. We call a scheduling algorithm throughput-
optimal if condition (7.16) is also sufficient under this algorithm.

7.4.1 Throughput Optimality and Fairness

We would like the dual scheduling algorithm discussed in the previous section to be
a throughput-optimal policy. However, fairness and maximum throughput are not di-
rectly compatible performance objectives. On one hand, as we can see in [4–6], there
is no guarantee of fairness with throughput-optimal scheduling. On the other hand,
fair scheduling may not be stable for some flows within the feasible rate region; see
the discussion in [28] for proportional fair scheduling algorithm in cellular network
in the downlink. The main reason why fair scheduling may not be a stabilizing pol-
icy is because it is usually traffic-independent. For example, in the proportional fair
scheduling algorithm, the scheduling decision is made based on the current achiev-
able rate and the mean throughput but not on the real traffic intended by the users.

Given the above consideration, a throughput-optimal scheduling policy should be
traffic-dependent. This motivates us to consider a scheduling algorithm whose vector
of service rates solves the following utility maximization:

max
0 0

X
( ) (7.17)

subject to & (7.18)
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where (·) is again independent of the data queue length . However, we cannot
solve problem (7.17),(7.18) directly, since the system only knows the current switch
state but not its statistics.

By the assumptions about data flows for each user, the arrival at the data queues
( ) is i.i.d. across time slots and with mean = [ ( )] and finite second

moment. The evolution of unfinished work ( ) and the modified dual scheduling
algorithm are given by

( + 1) = [ ( ) + ( ) ( )]+ (7.19)
( + 1) = [ ( ) + (˜ ( ) ( ))]+ (7.20)

( ) = min{ 0 1
( ( ) ( )) } (7.21)

( ) arg max
( ( ))

( ) (7.22)

where ˜ ( ) = min{ ( ) + ( ) ( )}. Equations (7.20)–(7.22) are the modi-
fied dual scheduling algorithm motivated by the utility maximization (7.17),(7.18).
It makes the scheduling decision based only on current backlog and switch state.
Note that if the unfinished work ( ) freezes, this algorithm will solve the utility
maximization approximately.

7.4.2 Optimality Proof

It is easy to verify that the pair ( ( ) ( ))6 evolves according to a discrete-time,
discrete-space Markov chain. The following theorem proves the stability of this
Markov chain under any sustainable flows, and shows that the modified dual schedul-
ing algorithm is a throughput-optimal scheduling policy.

Theorem 4. The Markov chain ( ) = ( ( ) ( )) is stable iff traffic condition
(7.16) is satisfied.

Before we prove Theorem 4, we first introduce two lemmas. Consider Lyapunov
function

( ) = 1( ) + 2( )

where 1( ) =
P

2 =
P 0((1+ ) ) 2, and 2( ) =

P 2

. is a small
positive constant that will be decided later on. Note that = 0((1 + ) ) 0,
since (·) is an increasing function. Also, note that 0(·) is a decreasing function.

Lemma 1. For any int( ), there exists a 0 such that the following inequality
holds:
6 Throughout this section, for convenience, we will use scaled queue-length ( ) rather than

the M-queue length ( ) to establish the stability and optimality properties of the dual
scheduling algorithm. This makes no difference, since ( ) is ( ) scaled by a constant and
all the properties of ( ) apply to ( ) and vice versa.
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[ 1( ( + 1)) 1( ( ))| ( )]
2
X

( ) + 2
X

( )((1 + ) ( )) + 1

where 1 is a positive constant.

Proof. For any int( ), there exists a small number 0 such that (1 + )
int( ), since is a closed convex set and 0 . By equation (7.19), we have

[ 1( ( + 1)) 1( ( ))| ( )]
=
X

[([ ( ) + ( ) ( )]+)2 2( )| ( )]X
[( ( ) + ( ) ( ))2 2( )| ( )]

=
X

[2 ( )( ( ) ( ))| ( )] +
X

[( ( ) ( ))2| ( )]X
2 ( )( ( )) + 1

=
X

2 ( ) +
X

2 ( )((1 + ) ( )) + 1 (7.23)

Here the positive constant 1 is the upper bound of
P

[( ( ) ( ))2| ( )].
This can be achieved since ( ) is upper bounded by and [ 2( )] is also
bounded.

Now we consider the second term in (7.23). If (1 + ) ( ),

2 ( )((1 + ) ( ))

2 ( ) 0( ( ))((1 + ) ( ))

= 2 ( )((1 + ) ( ))

where the first inequality follows from the fact that 0(·) is a decreasing function,
and the last equality follows from the fact ( ) (1 + ) and Equation
(7.21). If (1 + ) ( ),

2 ( )((1 + ) ( ))

= 2 ( )((1 + ) ( )) + 2( ( ) ( ))((1 + ) ( ))

2 ( )((1 + ) ( )) + 2( ( ) ( ) 0( ( )))((1 + ) ( ))

2 ( )((1 + ) ( ))

where the first inequality follows from Equation (7.21), and the last inequality fol-
lows from the fact that 0(·) is a decreasing function.

So, in any case, we get

[ 1( ( + 1)) 1( ( ))| ( )]
2
X

( ) + 2
X

( )((1 + ) ( )) + 1
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Lemma 2. The following inequality holds:

[ 2( ( + 1)) 2( ( ))| ( )] 2
X

( )( ( ) ( )) + 2

where 2 is a positive constant, and ( ) = argmax ( ) .

Proof. By Equation (7.20), we have

[ 2( ( + 1)) 2( ( ))| ( )]
=
X 1

[([ ( ) + (˜ ( ) ( ))]+)2 2( )| ( )]
X 1

[( ( ) + ( ( ) ( )))2 2( )| ( )]

= 2
X

[ ( )( ( ) ( ))| ( )] +
X

[( ( ) ( ))2| ( )]

= 2
X

( )( ( ) ( )) +
X

[( ( ) ( ))2| ( )]

= 2
X

( )( ( ) ( )) + 2

Here the positive constant 2 is the upper bound of
P

[( ( ) ( ))2| ( )].
This can be achieved since both ( ) and ( ) are bounded.

With Lemmas 1 and 2, we are ready to prove Theorem 4.

Proof. For any int( ), there exists a small number such that (1 + ) (1 +
2 ) int( ). Thus, by Lemmas 1 and 2, for any arrival process ( ) with mean
we have

[ ( ( + 1)) ( ( ))| ( )]
2
X

( ) + 2
X

( )((1 + ) ( )) + 1

+2
X

( )( ( ) ( )) + 2

= 2
X

( ) + 2
X

( )((1 + ) ( )) +

= 2
X

( ) 2
X

( ) +

+2
X

( )((1 + 2 ) ( ))

2
X

( ) 2
X

( ) +
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where = 1+ 2, and the last inequality follows from the fact that ( )maximizes
( ) over .

We can see that when || ( )||2 is large enough, the conditional mean drift of
Lyapunov function ( ( )) is negative. Thus, by Theorem 3.1 in [4], the Markov
chain ( ) is stable.

Theorem 4 shows that the system is stable under any sustainable flow int( ).
So, the modified dual scheduling algorithm is a throughput-optimal policy. Note that
we prove throughput optimality under a very general assumption of the flow arrival
process, while most similar results assume a Poisson arrival with exponentially dis-
tributed file size. Also, the above stability result is independent of the value of para-
meter , while in Section 7.3 the parameter characterizes the optimality of the dual
scheduling algorithm.

7.4.3 Flows with Exponentially Distributed Size

If the flow lengths are exponentially distributed with parameter 1 , the system can
be modeled by a Markov chain ( ( ) ( )), where ( ) is the number of active data
flows for user by the beginning of time slot . Similarly, we would like the vector
of service rates provided by the scheduling algorithm to solve the following utility
maximization:

max
0 0

X
( ) (7.24)

subject to & (7.25)

Let ( ) denote the number of new flows of user arriving in time slot ,
and ( ) the number of flows that complete data transfer in time slot . Thus,
[ ( )] = and [ ( )| ( ) ( )] = ( ). Motivated by the dual subgra-

dient algorithm for the above utility maximization, the evolution of ( ) and the
modified dual scheduling algorithm are given by

( + 1) = ( ) + ( ) ( ) (7.26)
( + 1) = [ ( ) + ( ( ) ( ))]+ (7.27)

( ) = min{ 0 1
( ( ) ( )) } (7.28)

( ) arg max
( ( ))

( ) (7.29)

Considering Lyapunov function ( ) =
P

2 +
P

2 and follow-
ing the same procedure as that in the proof of Theorem 4, we can directly obtain the
following theorem.

Theorem 5. The Markov chain ( ( ) ( )) is stable iff traffic condition (7.16) is
satisfied.
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This theorem shows that the system is stable under any sustainable flow
int( ). So, the modified dual scheduling algorithm (7.27)–(7.29) is a throughput-
optimal policy. Compared to other throughput-maximum policy, the modified dual
scheduling algorithm has the advantage of providing some short-term fairness. To
see this, note that Equations (7.27)–(7.29) are the dual subgradient algorithm. If the
number of active flows for each user freezes, the above scheduling algorithm will
solve the utility maximization (7.24),(7.25). But is time-varying, and the system
cannot achieve asymptotic optimality before the change of . Nonetheless, at the
level of flows whose time-scale is large compared to the duration of the time slot,
the algorithm will provide some level of fairness, since the system evolves along the
gradient direction to the optimal.

Note that throughout this section, we consider the system traffic at flow level,
but include packet level dynamics, i.e. the precise operation of scheduling mecha-
nism. We may also assume “the separation of time-scale”7, i.e. the modified dual
scheduling algorithm (7.27)–(7.29) works at fast time-scale and achieves the re-
source sharing objective (7.24),(7.25) perfectly at flow level. Under this assump-
tion, ( ) is an irreducible Markov chain, and we can choose Lyapunov function
( ( )) =

P
2 to prove that the algorithm is a throughput-optimal policy.

Theorem 6. Under the assumption of the separation of time-scale, the Markov chain
( ) is stable iff traffic condition (7.16) is satisfied.

Proof. Let denote the maximizer of the problem (7.24),(7.25). For any int( ),
there exists a small number such that (1 + ) int( ). So,

P
( )P

((1 + ) ). Note that (·) is a strictly concave function, thusX
( (1 + ) )X
( )

X
((1 + ) ) 0 (7.30)

Now consider the conditional drift of Lyapunov Function ( ):

[ ( ( + 1)) ( ( ))| ( )]
= 2

X
[ ( )( ( ) ( ))| ( )] +

X
[( ( ) ( ))2| ( )]

2
X

( )( ) + 3

where positive constant 3 is the upper bound of
P

[( ( ) ( ))2| ( )].
Thus,
7 Due to its analytical tractability, most researches on user-level performance of scheduling

algorithms assume a separation of time-scale [14,29].
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[ ( ( + 1)) ( ( ))| ( )]
2
X

( ) + 3 + 2
X

( )((1 + ) )

2
X

( ) + 3

where the last inequality follows from Equation (7.30). Thus, by Foster’s criterion
[27], the Markov chain ( ) is stable.

Remark 3: Many throughput-optimal scheduling algorithms for different versions
of the generalized switch model have been proposed [1,4–7,16,17,19]. Most of these
scheduling policies maximize

P
( ( )) , where (·) is an explicitly or im-

plicitly defined function of backlog , in order to achieve different performance ob-
jectives or implement different scheduling criteria. However, to our knowledge there
does not exist any throughput-optimal policy which maximizes

P
( ) ( ),

where (·) is a function of service rate . It is possible to achieve different per-
formance objectives by different choices of (·). In the modified dual scheduling
algorithm, we can say that we introduce M-queue to modulate the scheduling, which
implicitly defines a function (·). This modulation will definitely change the dy-
namics of the scheduling process, and to provide some weighted fairness among the
users at flow level is a such consequence. It is interesting to further study the related
issues.

7.5 A New Scheduling Architecture

The dual scheduling algorithm motivates a new architecture for scheduling in the
generalized switch (please see Figure 7.1 for a pictorial depiction). In this new ar-
chitecture, a queue, termed M-queue, is introduced to interface the user data queue
and the time-varying server. Data will depart from the data queue to enter the M-
queue, and the generalized switch serves directly the M-queue. Through controlling
the arrival process to the M-queue (or the departure process from the data queue),
we can modulate the scheduling process, in order to achieve different performance
objectives such as fairness, and maximum throughput, etc.

The dual scheduler would not incur much additional complexity. M-queues are
distributed at each user, and can be “virtual” or implemented as physical queues. The
control of the M-queue arrival process is also distributed at each user and depends
on only the “local” queue length of each user. The dual scheduler provides some
advantages over other scheduling algorithms. For example, in the cellular network
in the downlink, even though the primary scheduling algorithm can achieve fair re-
source allocation, it requires to estimate the average throughput of the users, while
with the dual algorithm we only need to simply measure the M-queue length. Also,
the dynamics of the M-queue ( ( ) and ( )) is feedback-controlled, and thus will be
relatively smooth, comparing with the dynamics of the switch. So, the dual scheduler
can provide a relatively reliable and smooth service to the users, and can behave as
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a good interface between higher layer protocols and the scheduling at the link layer
and ensure a better performance of the higher-layer protocols such as that of TCP
congestion control.

To provide Quality of Service in generalized switches is a difficult problem. In
the context of wireless networks, the interdependence of wireless links in combina-
tion with the time-varying nature of wireless channel makes QoS scheduling fairly
challenging and the available results are mostly on stability guarantees. In the con-
text of input-queued crossbar switch, input buffering makes scalable switch design
possible but makes QoS guarantees very challenging and again most available results
are on maximizing the throughput; see [30] for a review. The dual scheduler might
be promising in providing QoS in generalized switches, through carefully designing
the M-queue arrival process. Further study is needed on related issues.

7.6 Conclusions

In this article, we consider the dual scheduling algorithm for a generalized switch.
For a saturated system, we prove the asymptotic optimality of the dual scheduling
algorithm and thus establish its fairness properties. For a system with exogenous
arrivals, we propose a modified dual scheduling algorithm, which is throughput-
optimal while providing some weighted fairness among the users at the level of flows.

The dual scheduling algorithm motivates a new architecture for scheduling, in
which an additional queue is introduced to interface the user data queue and the
time-varying server and to modulate the scheduling process, so as to achieve differ-
ent performance objectives. Further research stemming out of this article includes
scheduling with Quality of Service guarantees with the dual scheduler, and its appli-
cation and implementation in various versions of the generalized switch model.
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Input-queued (IQ) switches do not require the very high internal speedup that is nec-
essary in output-queued (OQ) switches. IQ switches, however, require fairly complex
scheduling of the switch matrix, need moderate internal speedup for stability, and
cannot natively switch variable-length packets. The combined input and crosspoint
queued (CICQ) switch combines input queueing (using virtual output queues) with
a buffered crossbar. In this chapter, the history, performance, and future directions of
the CICQ switch since its invention in 2000 are described. For a CICQ switch, switch
matrix scheduling is simple, performance is high, and native switching of variable-
length packets is possible. The CICQ switch also lends itself well to exploiting future
higher VLSI densities. Future directions include a new concept of virtual crosspoint
queueing to reduce the effects of internal feedback delays. Challenges remain in how
to deliver QoS equivalent to that possible with OQ switches.

8.1 Introduction

Single-stage packet switches are the foundation of the Internet. The single-stage
switch architecture can be used within LAN switches at the edge of a network and
in routers in the core of a network. Many of these switches are also based on a
crossbar switch fabric. The simplest architecture is output queued (OQ) where all
buffering is at the output ports and the internal switch crossbar and all buffers must
operate at a “speedup” equal to times link speed (for an port switch). This
speedup requirement limits the scalability of OQ switches and thus a general inter-
est in input-queued (IQ) switches has developed. IQ switches potentially require no
speedup of buffer memory or of the crossbar switch fabric. However, IQ switches
require methods to prevent head-of-line (HOL) blocking. Virtual output queueing
(VOQ) first proposed by Tamir and Frazier in [1] and generally developed by Ander-
son et al. [2] and McKeown [3] eliminates HOL blocking at the input ports However,
a VOQ switch requires non-trivial scheduling of the crossbar matrix (i.e. a maximal
matching of input and output ports) to achieve high throughputs. Anderson et al. pi-
oneered the first VOQ scheduling method with Parallel Iterative Matching (PIM) [2].
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Figure 8.1. VOQ switch

McKeown improved upon PIM with iterative Slip, or iSLIP [3]. Many later works
are variations on iSLIP that offer improvements either in lower delay or reduction in
scheduler complexity. Figure 8.1 shows a two-port VOQ switch. The packet classifier
determines which output port a packet is to be forwarded to and queues the packet in
the associated VOQ buffer. The crossbar scheduler functionality is split between the
input ports (a) and output ports (b). Control lines (a) from the input port schedulers
control the crosspoints in the crossbar. Control lines (b) between the input and output
ports are used to signal match requests and receive feedback on matches between the
input and output ports. Inherent in all VOQ switches is the need to use fixed-length
cells within the switch for synchronized scheduling of all ports. Thus, variable-length
packets are segmented at the input port, switched as cells, and then reassembled into
packets at the output port. This use of internal cells forces an almost 2× speedup
requirement for switching for worst case packets (these are packets of length + 1
bytes for S byte cells). An additional 2× speedup is needed for stability for 100%
throughput for all possible inputs [4]. The complexity of VOQ switch scheduling is
becoming a bottleneck for scalability to higher link speeds and/or greater port counts.

Many of the open problems existing in VOQ switches are eliminated by com-
bining VOQ at the input ports with buffering in the crossbar. This combination –
called a combined input and crosspoint-queued (CICQ) switch – was first proposed
by Nabeshima [5] in 2000. This history of the CICQ switch is fully covered in Sec-
tion 8.2. Figure 8.2 shows a three-port CICQ switch. Each input port has a classifier
that queues an incoming packet into the VOQ matching the destination output port
of the packet. Variable-length packets may be queued and forwarded directly (i.e.
“native” packet switching where scheduling is not synchronized) or they may be seg-
mented into fixed-length cells for synchronized scheduling. Both native packet and
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Figure 8.2. CICQ switch

cell-based switching are considered in this chapter. In the case of packet segmen-
tation to cells, reassembly is performed at the output port. The input port includes
a scheduler – shown in Figure 8.2 is a round-robin (RR) scheduler – to select the
next eligible VOQ to forward its packet or cell to a crosspoint (CP) buffer. Occu-
pancy feedback from the crosspoints is used to generate a mask of VOQs at each
input port eligible to forward a packet or cell. If a CP buffer does not have sufficient
available storage for a cell or packet, it masks-out its corresponding VOQ. The oc-
cupancy feedback can be thought of as a form of credit-based flow control. That is,
a packet or cell cannot be forwarded to a CP buffer unless there is explicitly noted
space available for it. Within the crossbar, scheduling of cell (or packet) forwarding
from CP buffers to output ports is also based on RR arbitration in each “column” of
the crossbar. The CICQ switch of Figure 8.2 is thus an RR/RR CICIQ switch and
is the type of swtich studied in this chapter. Other types of scheduling are possible
in the input ports and/or in the crossbar including Longest Queue First (LQF) and
Oldest Cell First (OCF).

The CICQ switch addresses many of the open problems of IQ switches that use
an unbuffered crossbar switch fabric. The open problems addressed include:
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• Native switching of variable-length packets is possible. This eliminates the need
for segmentation and reassembly logic. This may also reduce required internal
speedup.

• A 2× speedup is not needed for inherent stability (e.g. to overcome insufficiency
of maximal matching in IQ switches).

• Scheduling is simple and does not require coupling of input and output ports. CP
buffer occupancy feedback from the CP buffers to the input ports is needed.

• The ever-increasing density of VLSI can be better exploited. Existing crossbar
chips are often I/O bound leaving many cells or gates unused. Adding buffering
and scheduling within the crossbar achieves better utilization of available gates
in a crossbar chip.

One problem that is not addressed is that of QoS scheduling. IQ and CICQ
switches are both deficient in this area compared to OQ switches. Existing Weighted
Fair Queueing (WFQ) variants for QoS scheduling all require output buffering be-
cause all session information based on a single system virtual time must be taken
into account to approximate General Processer Sharing (GPS).

8.2 History of the CICQ Switch

The concept of buffering in crossbars is almost 25 years old and is based on a 1982
patent by Bakka and Dieudonne [6]. In 1987, Nojima et al. implemented a bus matrix
switch (BMX) using a large multi-cabinet design [7]. The BMX used a crossbar with
CP buffers for packet queueing. The CP buffers were implemented with dual-port
memories allowing asynchronous operation among input and output ports. Switching
of variable length packets on each bus was possible. By increasing the number of
buses, the BMX could increase the switch capacity. Simulation results confirmed that
the switching delay was independent of the number of buses. A buffered crossbar
switch is equivalent to an OQ switch that has dedicated memory for packets from
each input. However, very large amounts of buffering are needed at each crosspoint,
and this is not feasible.

This amount of buffer memory needed within the crossbar can be reduced by
adding buffering at the input ports. Such a switch was investigated by Gupta et al.
where look-ahead selection of a packet from an input queue was based on level of
head-of-line (HOL) blocking [8]. A 16-port switch achieved 87.5% throughput for
uniform traffic [8]. This work was extended (by Gupta et al.) to support two levels of
delay-dependent priority classes, which resulted in an increase in throughput from
87.5% to 91% [9]. Switches with simple input queueing and a buffered crossbar
were further studied by Doi and Yamanaka [10] and Re and Fantacci [11]. Re and
Fantacci proved that the throughput for a CP buffered switch with FCFS queueing
discipline and random selection policy can approach 100% throughput for uniform
traffic. Stephens and Zhang proposed and modeled a buffered crossbar switch with
input buffers that supports QoS and variable-length packets [12]. This switch had
both buffering and packet fair queueing servers within the input ports, crossbars, and
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output ports. A speedup of slightly less than 2× was needed to support variable-
length packets.

In 2000, Nabeshima was the first to propose combining VOQ and buffered cross-
bar [5]. He was also the first to use the term “CICQ” for a VOQ plus buffered crossbar
switch. This terminology is followed in this chapter; that is, a CICQ switch contains
VOQ and a buffered crossbar. In the switch proposed by Nabeshima, OCF is used
where the HOL cell with the longest delay is selected for both the input port (by a
polling of all VOQs) and the CP buffer (by a polling of all CP buffers). The CICQ
switch entirely eliminates HOL blocking, and it has a lower mean cell delay than a
pure IQ switch above 65% loads. More importantly, the VOQ CICQ switch signif-
icantly reduced the amount of buffering required in the crossbar. As VLSI density
has continued to increase, it is now feasible to implement small amounts of buffer-
ing at each crosspoint in a crossbar. Xilinx implements a buffered crossbar in FPGA
technology for its Virtex-Extended Memory (Virtex-EM) devices [13]. In 2005, the
commercially available Xilinx XC2VP100 device contained 1 Mbyte of select RAM,
enabling 4 Kbytes of buffer space for each crosspoint of a 16-port switch. For a cell-
based switch, buffering equal to one or two cells at each crosspoint is sufficient.
The CP buffer occupancy status is reported from each crossbar row to its input port
where an independent RR polled selection of VOQs is made for the next available
CP. The buffer occupancy status must be reported at a rate equal to the maximum
cell transmission rate, which can be done asynchronously for each input port. No
communication of state is necessary between output and input ports.

Various scheduling algorithms for the CICQ switch have been investigated in the
past 5 years. A CICQ switch can have RR polling of the VOQs at the input ports
and RR polling of the CP buffers, and is thus an RR/RR CICQ switch [14]. The
RR/RR CICQ switch natively supports variable-length packets. Yoshigoe and Chris-
tensen showed that the CICQ switch has a lower delay than a VOQ IQ switch with
iSLIP for both cell and packet switching under uniform traffic [14]. A Combined
Input-One-Cell-CP Buffer crossbar (CIXB-1) with VOQs at the inputs and RR arbi-
tration (identical to RR/RR CICQ) was independently proposed at the same time by
Rojas-Cessa et al. [15]. This switch design was shown to achieve 100% throughput
under uniform traffic [15]. The mean delay of the CIXB-1 switch was proportional to
burst length and very close to that of an OQ switch. A Combined Input-CP-Output
Buffered (CIXOB-k , where k is the size of the CP buffer) with VOQs at the in-
put ports and RR arbitration requires buffers at each input, output, and CP [16]. A
CIXOB-k switch could achieve 100% throughput under uniform as well as non-
uniform traffic. A full-scale system design of a terabit switch incorporating ideas for
the CIXOB-k switch architecture is described by Chao [17]. Performance degrada-
tion due to synchronization effects of multiple input ports transmitting cells to a same
destination output was studied by Han et al. [18, 19]. To reduce the input synchro-
nization, the starting points of the RR arbiters were incremented by one independent
of a matching result. This reduced the mean delay for bursty traffic [18,19]. Different
combinations of RR, LQF, and OCF at input and output scheduler were evaluated.
Simulation results showed that there was only a slight difference in mean delay for
both uniform Bernoulli and Interrupted Bernoulli Process (IBP) traffic [20].
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A major issue in switch matrix scheduling is stability. A stable switch has
bounded queue length for all possible schedulable loads. Both weight-based [21]
and priority-based [22] schemes have been shown to provide 100% throughput for
any admissible flow. CICQ switches can achieve stability if OCF or LQF is used to
select VOQs in an input port [21]; however, both OCF and LQF require comparisons
between all ports during each scheduling cycle. This requires either sequential
comparisons or log2( ) comparisons with a tree circuit containing 1 compara-
tors. A method first proposed by Yoshigoe et al. in [23] and further investigated
in [24] does not require log2( ) comparisons to achieve stability. In the proposed
method, when a VOQ in an input port is selected to transfer a cell in the next cycle,
a threshold comparison is made. As long as the current VOQ queue length exceeds
a set THRESHOLD, then up to BURST cells can be transmitted from the VOQ be-
fore another VOQ from the same input port is allowed to be matched. An RR-based
arbitration scheme with adaptable-size frame was proposed by Rojas-Cessa in [25]
and further evaluated in [26]. This scheme can adapt to frame size based on the
amount of service that both VOQs and CP buffers receive. A similar scheme was
proposed by Rojas-Cessa where frame size is determined by the cell occupancy of
the VOQ at the time of frame service completion [27]. A scheduling algorithm based
on the Shortest internal Buffer First (SBF) at the input side and the Longest internal
Buffer First (LBF) at the output side has lower mean delay than OCF/OCF CICQ [5]
and LQF/RR CICQ [21] switches under bursty uniform traffic as well as under un-
balanced traffic while reducing its hardware and timing complexity [28]. A similar
approach by Zhang and Bhuyan in [29], using a Shortest Crosspoint Buffer First
(SCBF) algorithm for input arbiters with any work-conserving output arbiters, was
shown to achieve 100% throughput for any admissible traffic. Analysis by Lin and
McKeown showed that the throughput of a buffered crossbar switch increases with
switch size, which contrasts with unbuffered crossbar switches [30].

Only recently has QoS been addressed in the context of CICQ switch architec-
tures. In [31] Motoyama and Arantes tagged arriving cells at the input port with
their arrival time and forwarded the tagged cells to the CP buffers. The amount of
bandwidth needed to allocate to a flow in the switch to guarantee delay was deter-
mined by Duan and Daigle [32]. WFQ for a CICQ switch was implemented and its
fairness properties were studied by Chrysos and Katevenis [33]. Magill et al. [34]
and Mhamdi and Hamdi [35] emulated an OQ switch with a CICQ switch with 2×
speedup. Chuang et al. [36] and Giaconne et al. [37] proved that a 2× speedup can
guarantee 100% throughput in a CICQ switch. Chuang et al. also proved that a 2×
speedup is sufficient for rate guarantees and a 3× speedup is sufficient for delay
guarantees [36]. The smooth multiplexer of He et al. emphasized QoS over work-
conservation [38]. The smoothed multiplexer used rate-based flow control where the
weight of each flow is considered for scheduling. The study proved that the occu-
pancy of each crosspoint buffer in the proposed smoothed CICQ switch never ex-
ceeded four cells regardless of internal switch fabric latency and line rate. Further
investigation is needed into QoS in the CICQ switch architecture – in particular how
to feasibly implement QoS scheduling.
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An RR/RR CICQ switch can natively forward variable-length packets, and such
a switch requires no speedup to compensate for padding bytes nor is segmenta-
tion/reassembly of the packets at the input/output ports needed. However, it is un-
fair [39]. To eliminate this unfairness, a block transfer mechanism that transfers up
to a predefined number of bytes of packet data from a selected VOQ was proposed by
Yoshigoe and Christensen [23] and Yoshigoe et al. [39]. The transfer block can con-
sist of multiples of partial and/or entire packet. A similar approach was investigated
by Katevenis and Passas [40].

To accommodate higher link speeds and greater port counts, switches are being
implemented in multiple, distributed units. These units may be several meters apart
introducing significant propagation delay between the line cards and switch fabric.
An IBM research report by Abel et al. was the first work that describes the imple-
mentation of the distributed CICQ switch where line cards and switch fabrics are
distributed in multiple units [41]. Since then, several studies have addressed the is-
sue of CP buffer size related to a large RTT delay (here RTT is measured in cell
times) between input ports and CP buffer. Luijten et al. investigated a priority eleva-
tion mechanism [42]. Temporary elevation of lower priority packets when they are
already in the switch fabric was used to reduce blocking of higher-priority packets.
The CP buffer size was significantly reduced from 2 to 2 + 1
where is the RTT. A two-lane buffered crossbar design was proposed to handle
more than two levels of priority traffic using only two queues per CP by Chrysos [43]
and Chrysos and Katevenis [44]. Gramsamer et al. showed that the CICQ switch
with a CP buffer size that can hold 60% of back-to-back cells in transit between the
line card and the CP buffer had an acceptable performance for bursty traffic [45].
Simulation evaluation of the effect of RTT and CP buffer size for variable-length
packets has been carried-out by Katevenis et al. [46]. As link data rates and internal
cable lengths increase, the minimum number of feedback credits needed to maintain
work conservation of the switch increases. Consequently, the switch fabric will no
longer be able to implement CP buffers sufficient to maintain work conservation of
the switch. A load-balanced CICQ switch was proposed by Rojas-Cessa et al. [47].
An extra switch stage that serves as a load-balancer was inserted between the input
ports and buffered crossbar to relax the CP buffer size such that flows with high data
rates can be handled when CP buffer size is smaller than RTT. The CP buffer size
was reduced by a factor of independent of the RTT value. However, there is an
additional cost for implementing a load-balancer. CICQ switches that scale indepen-
dently of the growth of the RTT value are needed. This remains an open research
challenge. Section 8.6 describes one possible new direction.

8.3 Performance of CICQ Cell Switching

The primary performance measure of interest in a packet or cell switch is switch
delay. This is the delay measured from the first bit of a packet or cell entering the
switch at an input port, to the first bit of the packet or cell departing from an output
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port. It is desirable to minimize mean switch delay and also minimize the variability
of this delay.

In this section, the cell switching performance of an RR/RR CICQ switch is
evaluated. In the next section, performance is evaluated for native packet switching.
Performance evaluation was done using discrete-event simulation models of VOQ IQ
(using iSLIP scheduling), OQ, and CICQ switch architectures. The models were built
using the commercial CSIM simulation library [48] and validated against published
results [49–51]. All simulation experiments were run using batch means convergence
until a 2% accuracy level was achieved with a 95% confidence interval, unless oth-
erwise stated. The simulation models are freely available from the authors of this
chapter [52].

8.3.1 Traffic Models

To evaluate cell switching performance, Bernoulli and Interrupted Bernoulli Process
(IBP) arrivals were modeled for a slotted (cell) system. The Bernoulli model is a
“classic” traffic model for evaluating switch performance [2, 3, 21, 49, 53]. IBP ar-
rivals are frequently used to approximate the bursty nature of packet switched traf-
fic [14, 20, 54]. The IBP is a two-state traffic model alternating between busy (ON)
and idle (OFF). For Bernoulli arrivals at rate ( 0 1) the probability of a
slot having an arriving cell is and being empty is 1 . The arrival rate ( ) is the
offered load, . For IBP arrivals,

= Pr [arrival at | IBP is in ON state]

= Pr [IBP is in ON state at + 1 | IBP is in ON state at ] , and

= [IBP is in OFF state at + 1| IBP is in OFF state at ]

The mean length of an ON period is 1 (1 ) and the mean length of an OFF
period is 1 (1 ). The OFF period is at least one slot. The offered load is

=
(1 )

2
(8.1)

The Coefficient of Variation (CoV) for IBP arrival is given by

= 1 +

Ã
(1 ) ( + )

(2 )2
1

!
(8.2)

In the experiments in this chapter, was always set to 1 so that traffic was gener-
ated at full data rate in the ON state. The parameters and were varied to achieve
a desired CoV and offered load.
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8.3.2 Simulation Experiments

For all simulation experiments, the switch delay was measured in cell times. VOQ
buffer size was assumed to be infinite in all cases. For the CICQ switch model, each
CQ buffer size was equal to one cell length (64 bytes). For the iSLIP IQ switch
model, four iterations of the iSLIP algorithm were implemented for each scheduling
cycle. The switch was modeled with 16 input ports and 16 output ports ( = 16).
The experiments were:

Bernoulli experiment (balanced): Bernoulli arrival of cells with uniformly se-
lected outputs. Offered load ranged from 50% to 98%. This experiment evaluated
switch performance for smooth and balanced traffic.
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Figure 8.3. Mean response time (balanced Bernoulli arrivals)

Bernoulli experiment (unbalanced): Bernoulli arrival of cells where half of the
input ports were the source of exactly four flows and half were the source of exactly
eight flows. Each flow rate was identical. Thus, half the input ports were loaded
at and the other half were loaded at 2 . Eight random permutations were used
to define the flows. All eight flows defined by the permutations were used for the
heavily loaded input ports, and only the first four permutations were used to define
the flows for lightly loaded input ports. Each output port supported at least four flows
and at most eight flows. The offered load ranged from 50% to 98%. This experiment
evaluated switch performance for smooth and unbalanced traffic.

IBP experiment: IBP arrivals of cells with uniformly selected outputs for bursts
(i.e. for ON periods) of cells. The CoV was fixed at 2.0 and the and values
solved (using Equations (8.1) and (8.2)) for offered loads from 50% to 90%. This
experiment evaluated switch performance for bursty traffic.

Figures 8.3, 8.4 and 8.5 show the mean response time (switch delay) results for
the three experiments. For the Bernoulli experiment with balanced selection of out-
put ports, the mean response time for the CICQ switch was lower than that of iSLIP
for offered loads greater than 75%. At lower offered loads, the two store-and-forward
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Figure 8.4. Mean response time (unbalanced Bernoulli arrivals)
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operations within the CICQ switch dominate the response time (the crossbar buffer-
ing was implemented as store-and-forward memory in the simulation model). If one
store-and-forward delay is removed, the results shown with the dotted line in Figure
8.3 are achieved and the response time is less than that of an iSLIP switch for all
offered loads. The OQ switch remains as a lower bound for delay. For the Bernoulli
experiment with unbalanced arrivals, the iSLIP switch becomes unstable above 92%
offered loads where the CICQ switch does not become unstable. Speedup is needed
in the iSLIP switch to overcome this inherent instability. For the IBP experiment, the
iSLIP switch had slightly lower delay than the CICQ switch at low offered load while
they had roughly similar delay at high load. Again, the OQ switch remains as a lower
bound for delay. Bursty traffic increases switch delay and reduces the difference in
performance between the different switch architectures.
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8.4 Performance of CICQ Packet Switching

In this section, the performance of an RR/RR CICQ switch is evaluated for native
packet switching. As for the cell switching evaluation, all simulation experiments
were run using a batch means convergence until a 2% accuracy level was achieved
with a 95% confidence interval, unless otherwise stated. The simulation models are
freely available from the authors of this chapter [52]. The models require the CSIM
library [48].

8.4.1 Traffic Models

To evaluate packet switching performance, packet lengths were independently pulled
from an empirical “USF distribution” based on over 5 million packets collected at
about noon during a week day in November 2001 from the University of South
Florida Gigabit Ethernet backbone. Figure 8.6 shows a histogram of the measured
packet lengths. The mean packet length was 364.7 bytes. The most common packet
length was 64 bytes (with 41.5%) followed by 1518 bytes (8.2%), 558 bytes (7.0%),
90 bytes (5.9%), and 570 bytes (5.5%). All other packet lengths occurred at less than
2.5% frequency.
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Figure 8.6. USF distribution of packet lengths

8.4.2 Simulation Experiments

For all simulation experiments the mean switch delay was measured in microsec-
onds. VOQ buffer size was assumed to be infinite in all cases. For the CICQ switch
model, each CQ buffer size was equal to 1518 bytes (i.e. maximum Ethernet packet
length). For the iSLIP IQ model, four iterations of the iSLIP algorithm were imple-
mented using Marsan et al. cell trains [55]. In the cell train modification of iSLIP, the
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Figure 8.7. Mean response time (balanced packets)

matching of a head-of-packet cell was maintained until all cells of that packet were
forwarded. The use of cell trains provides better performance than individual cell-by-
cell scheduling for variable-length packets for iSLIP. With a mean packet length of
364.7 bytes, six 64-byte cells of total 384 bytes are needed, which is a 5% overhead.
Thus, for the iSLIP IQ switch an internal speedup of 1.05× of the buffer memory
and crossbar was modeled. The switch was modeled with 16 ports ( = 16). The
experiments were:

Packet experiment (balanced): Poisson arrivals of variable length USF distributed
packets with uniformly selected outputs. The offered load was varied from 80% to
98%.

Packet experiment (unbalanced): Poisson arrivals of variable length USF distrib-
uted packets with unbalanced load (same as for the cell switching Bernoulli unbal-
anced experiment). Offered load was varied from 80% to 98%.

Figures 8.7 and 8.8 show the mean response time (switch delay) results for the
packet experiments. For balanced traffic, the iSLIP cell train without speedup could
not carry an offered load above 96%. With 1.05× speedup, stability was achieved.
The mean delays of the iSLIP with cell train and 1.05× speedup, and that of the
CICQ switch are similar. The speedup used with the iSLIP with cell train compen-
sates for the transferring of empty bytes, achieving stability for all offered loads
measured. The CICQ switch natively supports variable-length packets. As was ex-
pected, the OQ switch had the lowest mean delay. For unbalanced traffic, the iSLIP
with cell train, the iSLIP with cell train and 1.05× speedup, and the CICQ switch
become unstable above 92%, 96%, and 98% load, respectively. The OQ switch is
stable for all offered loads measured.

CICQ switches can natively forward variable-length packets and do not require
speedup due to transfers of padding bytes. However, a CICQ switch forwarding
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Figure 8.8. Mean response time (unbalanced packets)

native variable-length packets is not work conserving when the transfer of a large
packet from VOQ to CP “blocks” transfer of a small packet from VOQ ( 6= ).
For a simple scenario, consider a two-port CICQ switch where CP12 and CP22 have
a packet of size buffered. If both VOQ11 and VOQ21 were selected for transferring
packets of size greater than 2 , output link 2 entirely drains the packets from CP12
and CP22 before the transfer of packets to CP11 and CP21 are completed. Thus, both
CP12 and CP22 become empty, and output link 2 temporarily becomes idle. Output
link 2 would not have been idle if either VOQ12 or VOQ22 were selected. This condi-
tion can exist in a switch with any port count. This lack of work conservation can be
addressed with internal speedup or by a block transfer mechanism [23, 39] or some
variant of block transfer [40].

8.5 Design of Fast Round-robin Arbiters

Many switch architectures, including iSLIP [3], use round-robin (RR) arbiters as part
of their switch matrix scheduling. The RR/RR CICQ switch uses two levels of RR
arbitration. The RR arbiter is the bottleneck in a CICQ switch as the number of ports
and/or link data rates increase. For example, for a CICQ switch with 16 ports and a
100 Gb/s link data rate a 64-byte cell must be forwarded in 5.12 nanoseconds, and a
worst case scheduling cycle also completed in this time (i.e. with 0.32 nanoseconds
per input port polled). The worst case scheduling cycle is ports (e.g. one port
has packets or cells queued and 1 empty ports must be polled between each
non-empty poll).

For an RR/RR CICQ switch to achieve 100% throughput, the RR arbiters must
be work conserving. Consider a slotted system with queues, , where = 1
2 . Each queue buffers fixed-length cells arriving from external sources. The
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Figure 8.9. Shift encoder design

cell queues may correspond to VOQs at a switch input port. The time to forward a
cell is . A poller visits queues in sequential RR fashion with a delay of for
each queue visited. The delay occurs whether the visited queue is occupied or
empty. If · then a simple two-stage RR arbiter that can select the next
queue while the currently selected queue is forwarding a cell is sufficient (the arbiter
is work-conserving) such that the output link is never idle if there are cells queued in
any of the queues. Most existing RR arbiters are based on a two-stage approach
in which scheduling is done simultaneously with cell transmission. A cell forwarded
in time slot is scheduled in a previous time slot 1. In existing two-stage switch
designs that select one cell per scheduling cycle, 100% throughput for the single
cell selected per poll can only be achieved if · . If · , 100%
throughput can be achieved only if more than one cell can be selected and forwarded
per poll. A scheduler may exhibit fairness in the short term and must exhibit fairness
in the long term. In a short-term fair scheduler, all nodes receive an opportunity
to forward a cell within every cell forwarding time. In a long-term fair scheduler,
all nodes receive an opportunity to forward a cell in a finite time (i.e. scheduling
delay is bounded). In this section, designs for fast RR arbiters for the two cases, (1)
short-term fair where · and (2) long-term fair where · , are
investigated.

8.5.1 Existing RR Arbiter Designs

Previous work has been done in designing fast RR arbiters at both the transistor
and gate level. A priority encoder was implemented by Delgado-Frias and Nyathi
at the CMOS transistor level [56]. This implementation used a priority look-ahead
approach similar to that of a look-ahead adder. The design (implemented in 1 micron
CMOS) achieved a priority encoding in 4.1 nanoseconds for a 32-bit input.

A well-known gate-level design for a short-term fair RR arbiter is the double
barrel-shift RR poller (called SHFT_ENC in [57]), which is shown in Figure 8.9. It
consists of two barrel shifters and a simple priority encoder, smpl_pe. Request bits

of size are rotated by an amount _ ( _ is log2( ) bits) to indicate
the queue with the currently selected buffer. This is then input into another smpl_pe
and again rotated by _ in the reverse direction. The outputs are grant bits
of size and a bit, , indicating whether there is a grant. The barrel shifters
dominate the critical path delay.
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Existing short-term fair RR arbiters can be categorized as sequential polling, non-
sequential polling, tree arbitration, and pipeline structures. Sequential polling is the
simplest implementation of RR polling, and it has ( ) scalability with each new
node adding a delay to the scheduling delay. An example of sequential polling
is fully serial ripple (RIPPLE) described in [57]. Token tunneling, a form of non-
sequential polling, proposed by Chao, allows a pointer to skip a set of ports if none
of the ports has packets to send [17]. Token tunneling reduces the arbitration time of
sequential polling to ( )

Tree-structured RR arbiter designs [57–60] reduce the arbitration time over a se-
quential design. The arbitration time of the ping-pong arbitration (PPA) scheme by
Chao et al. for an -input switch is proportional to log2 d 2e [58]. The arbitration
time is only 11 gate delays for a 256-port switch. The parallel RR arbiter (PRRA) by
Zheng et al. uses a binary tree structure [60]. Similar to the PPA design, the PRRA
has (log2( )) gate delays but it resolves an unfairness problem in the PPA sched-
uler. Arbitration time of the tree-structured RR arbiters described in [57, 59] is also
(log2( )). The Exhaustive (EXH) in [57] uses duplicate copies of a simple pri-

ority encoder, and the selection of priority encoder is made by the programmable
priority input. Thus, this design does not scale for a large . The PROPOSED de-
sign in [57] is a look-ahead approach that eliminates the programmable part of a
programmable priority encoder (PPE) by pre-processing inputs. PROPOSED elimi-
nates a combinational feedback loop that is difficult for synthesis tools to optimize
and eliminates a long critical path from a programmable highest priority level.

Pipelined arbiter designs are used in several switch architectures including those
of [61–63]. Round-robin greedy scheduling (RRGS) can scale to a large switch be-
cause the amount of information transferred among function modules is small [63].
However, the scheduling delay increases in proportion to the number of switch ports,
and scheduling can be unfair. The group-pipeline scheduler (GPS) by Motoki et al.
improves on RRGS by dividing nodes into groups ( nodes per a group),
and assigns an RRGS function module to each group [62]. It has a smaller arbitra-
tion time and better fairness than RRGS. An FPGA implementation of RR schedul-
ing using a pipelined priority encoder and barrel shifter was developed by Huajin
et al. [61]. Encoded bits are divided and input to multiple smaller priority encoder
units. Outputs from these units are merged and input to another priority encoder to
obtain the final encoded result. An arbitration time of (log2( )) can be obtained
at the cost of using more FPGA space.

Some pipelined arbiters are not of a two-stage design. One example is the
pipeline-based concurrent round-robin dispatching scheme using multiple subsched-
ulers by Oki et al. [64]. Each subscheduler provides a dispatching result in every th
scheduling cycle given subschedulers.

8.5.2 A New Short-term Fair RR Arbiter – The Masked Priority Encoder
(MPE)

A new, fast short-term fair masked priority encoder (MPE) poller design was first
developed and evaluated by Yoshigoe et al. [65]. The MPE is a priority encoder that
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1.  Generate masking bits Msk based on the previously selected VOQ value. 
 
2.  Mask-out request bits that are equal or less than the value of the 

previously selected VOQ. 
 
3.  If masked requests M_req is non-zero then select M_req.  Otherwise 

select Req. 
 
4.  Encode the selected bits (M_req or Req) with smpl_pe. 

Figure 8.10. MPE RR arbiter algorithm
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Figure 8.11. MPE RR poller design

uses bit-wise masking to select an appropriate VOQ. As with the PROPOSED de-
sign [57], no programmability is required, and only a smpl_pe is needed. The four
basic steps in the MPE are shown in Figure 8.10. The masking bits are generated
by [ ] = [ ] · [ + 1] · [ + 2] · · [ 1]. The MPE directly
uses a previously derived -bit grant value for the next polling. Thus, it requires
neither an encoder or decoder to convert the -bit form to or from a log2( )-bit
form. Figure 8.11 shows the logic diagram of the MPE. To evaluate the performance
of the MPE, the programmable priority encoder RR poller designs in [57] were im-
plemented using VHDL, and simulated with the Xilinx WebPACK 4.2 ModelSim
XE [66]. The targeted device was the Xilinx Virtex II XC2V40 FG256. Simulations
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were run with the same time and space optimization settings for all designs. The de-
lay and space requirement were measured for each design. Table 8.1 shows the delay
(in nanoseconds) and Table 8.2 shows the space in basic elements (BEL) of the RR
arbiter designs. The last row in the tables indicates the improvement of MPE over the
design with the next best performance. BELs are the building blocks that make up a
component configurable logic block for an FPGA and include function generators,
flip-flops, carry logic, and RAM. The relative results do not exactly match with the
results in [57]. In [57] two-input gate equivalents were used to size the designs. The
design in [57] uses a digital signal processor (DSP) as the target device; however,
the target device used for this study was an FPGA, which is capable of handling the
high-speed data on the chip. This difference in targeted devices also results in the use
of different simulation tools and configurations.

Table 8.1. Evaluation of delay (nanoseconds)

Design N = 8 N = 16 N = 32 N = 64
RIPPLE 17 24 41 73

CLA 14 17 23 23
EXH 10 16 26 50

SHFT_ENC 15 24 37 64
PROPOSED 13 21 33 55

MPE 10 11 13 16
Improvement 0.0 % 47.6 % 43.5 % 30.4 %

Table 8.2. Evaluation of space (FPGA BELs)

Design N = 8 N = 16 N = 32 N = 64
RIPPLE 17 31 126 380

CLA 21 41 145 418
EXH 132 473 2391 10134

SHFT_ENC 58 143 350 836
PROPOSED 37 74 150 318

MPE 65 134 355 798
Improvement –282.6% –332.3 % –181.7 % –150.9 %

The results show that the MPE had lower delay than any other design for all
measured values of . However, it required more space than any other design, except
EXH. For modern VLSI, space is rarely the constraining factor. The better delay
performance of the MPE is due to the fact that the MPE uses bits to determine the
value for the next poll. The MPE does not require an encoder or decoder to convert
the -bit form to and from a log2( )-bit form, which would result in a speedup at
the cost of space required to accommodate bits versus log2( ) bits.
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8.5.3 A New Fast Long-term Fair RR Arbiter – the Overlapped RR (ORR)
Arbiter

To improve the scalability of RR polling, a long-term fair overlapped round-robin
(ORR) arbiter that fully overlaps polling and cell scheduling was proposed by Yoshi-
goe and Christensen in [67]. In a system of queues, each queue has one control
input (select) and one control output (arrival). Figure 8.12 shows a cell queue and
Figure 8.13 shows the system of queues with an (a) RR polling unit and (b) cell
scheduling unit. The polling algorithm is shown in Figure 8.14 and the scheduling
algorithm in Figure 8.15. A counter 1 is incremented on cell arrivals to and
decremented on scheduled cell departures. The arrival output causes the increment
of 1 The decrementing of 1 is caused by the scheduling algorithm. The counter
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        1.  do forever 
        2.      i = mod(i, N) + 1 
        3.      while (C3 > K) wait 
        4.      mark = min(K, C1i – C2i) 
        5.      if (mark > 0) 
        6.          C2i = C2i + mark 
        7.          C3 = C3 + mark 
        8.          S.i = i 
        9.          S.m = mark 
      10.          queue S to the scheduling queue              

Figure 8.14. Polling algorithm

        1.  do forever 
        2.      if (the scheduling queue is non-empty)  
        3.          S = dequeue from scheduling queue 
        4.          set select for queue S.i 
        5.          do for j = 1 to S.m 
        6.              wait for a cell to finish forwarding 
        7.              decrement C1S.i, C2S.i, and C3 
        8.          reset select for queue number S.i 

Figure 8.15. Scheduling algorithm

1 represents the number of cells currently queued in queue . A counter 2 is
decremented on cell departures from and is increased in the polling algorithm
shown in Figure 8.14. The counter 2 represents the number of cells in a queue
“marked” for forwarding. At all times, 1 2 0 The select input line is used
to select a queue for forwarding cells. Only one select line can be active for any
given cell slot. A single counter 3 representing the number of cells permitted to
be forwarded in the scheduling queue is also maintained. All counters are stored in
the polling unit. A constant value, K , is used in the polling unit. The counter 3
and the setting of are described later. The polling algorithm (Figure 8.14) “vis-
its” each queue by testing whether 1 2 0 (line 4). If this holds, then
there are unmarked cells in the queue. When a queue is visited and the mark value
(line 4) is non-zero, the counters 2 and 3 are updated and a scheduling value,

, comprising the queue index, , concatenated with the number of cells marked in
this visit, (1 ) is queued in a special scheduling queue. The polling
time is incurred in lines 2 to 10 of the polling algorithm and in the time to incre-
ment 1 For this study, the notation and are used to mean the index value
and marked cell count, respectively, for a given value of . The value is of size
log2( )+log2( ) bits. Line 3 in the polling algorithm stops the polling if the value
of 3 exceeds . The counter 3 contains the sum of currently queued in the
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service queue. The poll stopping in line 3 is essential to improving long-term fair-
ness, and its properties are discussed later in this section. The scheduling algorithm
(Figure 8.15) dequeues from the scheduling queue when all currently scheduled
cells have been forwarded. For example, if the currently dequeued scheduling value
has equal to 3, then after 3 cell forwarding times, the next queued scheduling
value will be dequeued. The index is the queue to be issued a select for forward-
ing of cells. The polling and scheduling algorithms run concurrently. The value
of is set so that work conservation is achieved for all possible cases of queued
cells in the queues. The value of also binds the maximum delay a cell arriving
to an empty queue will experience (from [67]):

Lemma 1. The smallest integer needed for the ORR scheduling to achieve work
conservation for all cases of queued cells in the queues can be derived as

=

» ¼
Proof. A time to poll all nodes; divided by is the total cell forwarding
time required to poll all nodes. That is, cells are forwarded during one
RR scheduling cycle. If this RR scheduling time is less than the cell forwarding
rate, at least one cell is scheduled during one cell forwarding time. Thus the system
becomes work-conserving for any The least integer greater than or
equal to is a ceiling of

Theorem 1. A new HOL cell at any queue of the ORR arbiter can be forwarded in
less than · ( 1) + 2 + 1 cell forwarding times.

Proof. By definition, the ORR poller visits any of queues in every polling time
where each queue marks up to cells per polling time. Thus, a HOL cell at any
queue has to wait, at most, ( 1) cell forwarding times if the scheduled queue
was empty. Since the sum of in the scheduling queue can be as large as 2 a
new HOL cell at any queue has to wait, at, most ( 1) + 2 cell forwarding
times.

The ORR arbiter can be used to implement the RR arbitration in the CICQ switch.
Each of CPs, CP where = 1 2 associated with VOQ sends one bit of
CP status, , to its input port. For a CP buffer size of 3 cells, an of 0 is sent
if the occupancy at CP is below . An F of 1 is sent if the occupancy at CP is
at or above (at most 2 cells destined for CP may be queued in the scheduling
queue of the ORR arbiter). Thus, controls the operation of the line 5 of the polling
algorithm as if (( 0) and ( == 0)).

8.6 Future Directions – The CICQ with VCQ

This section outlines one possible solution to reducing CP buffer size due to a large
RTT (measured in cell times) between the input ports and crossbar switch fabric in a
CICQ switch. Virtual crosspoint queues (VCQs) are proposed as a means of reducing
the amount of required memory within the crossbar.
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Figure 8.16. CICQ switch with VCQ

8.6.1 Design of Virtual Crosspoint Queueing (VCQ)

The VCQ concept places virtual queues at the edge of (and within) the crossbar
switch fabric. Figure 8.16 shows VCQs in a CICQ switch. Similar to an existing
CICQ switch, there is buffering and scheduling at the input ports and CP buffering
and scheduling internal to the switch fabric. In addition, there are memory units
and VCQ schedulers internal to the switch fabric physically near to the crossbar.
The memory unit is partitioned into logical queues each dedicated to a unique
CP in the form of VCQ. Each memory unit is dynamically shared among VCQs.
Thus, the size of the memory unit is the sum of _ for = 1 2 ,
where _ is a size of VCQ for input and output . Two credit-based flow
control mechanisms are used as shown in Figure 8.17. The flow control between
VCQ and CP buffers uses a unique credit, _ per CP buffer, while
the flow control between an input port and a set of VCQs uses a common credit,

_ . Separate arbiters are used to schedule packets buffered in the VOQ,
VCQ, and CP, each of which can be an RR poller. For the CICQ switch without VCQ,
each buffer size at _ , must be large enough to hold RTT cells and
requires RTT credits to guarantee 100% throughput for completely unbalanced traffic
where an input sends its entire traffic to a single output port . The CICQ with
VCQ can dynamically allocate its VCQs to buffer completely unbalanced traffic.
Thus, the CICQ–VCQ switch with _ of one cell needs to hold only RTT
cells in the VCQ buffers to guarantee 100% throughput. The _ and sum of

_ that provide acceptable performance for both balanced and unbalanced
traffic are investigated in the next section.
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Figure 8.17. CICQ with and without VCQ

8.6.2 Evaluation of CICQ Cell Switch with VCQ

The performance of a 16-port CICQ switch with and without VCQ was evaluated
using simulation. For all experiments, the RTT value was set to 64 cell times.

Bernoulli experiment (balanced): Bernoulli arrival of cells (as described in Sec-
tion 8.3) with uniformly selected outputs. Offered load was ranged from 50% to 98%.
The CP buffer size was set to 16 and 64 cells for the CICQ switch with and with-
out VCQ, respectively. The VCQ memory unit size was varied from RTT to twice
RTT. This experiment evaluates the switching delay of a switch with a large RTT for
smooth traffic.

Bernoulli experiment (unbalanced): Bernoulli arrivals of cells with unbalanced
traffic as used by Rojas-Cessa et al. [15]. For input , output , unbalanced probability

, and offered input load , the traffic load from input to output , , was given
by

=

µ
+
1

¶
if = and otherwise by

=

µ
1

¶
.

The offered traffic is uniform when = 0 and is completely directional from
input to when = 1. A CP buffer size is varied to hold up to RTT cells. This
experiment evaluates the throughput of a switch with a large RTT under unbalanced
traffic. This traffic model has been used to evaluate the impact of CP size on the
performance of the CICQ switch in [25–28, 46, 47].
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Figure 8.18. Mean response time – RTT (balanced Bernoulli arrivals)
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Figure 8.19. Throughput of CICQ switch with and without VCQ

Figure 8.18 shows the result of the balanced Bernoulli experiment in which val-
ues of mean delay minus RTT is plotted. The CICQ switch with VCQ buffers of size
64 cells became unstable at 97% offer load. Both of the CICQ switches with VCQs
of size 96 and 128 cells were stable for all offered loads and had comparable mean
delay to that of the CICQ switch with a CP size of 64 cells. About one cell time
difference (due to the extra buffering stage by VCQ) was observed at low offered
load. Figure 8.19 shows the result of the unbalanced Bernoulli experiment. All mod-
els achieved close to 100% throughput when traffic was uniformly distributed. The
throughput of the CICQ–VCQ switch was close to 100% when = 1 regardless of
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CP size. This was expected becauseX
=0

_ .

Throughput of the CICQ switch with CP size of 4, 16, and 32 cells decreased
significantly as traffic became unbalanced, becoming equal to ( _ RTT) ·
100 when = 1 as expected. The throughput of the CICQ–VCQ switch with CP
size of 16 and 32 cells was close to 100% throughput for all . For VCQ size of
128 cells with CP size of 16 cells, memory savings in each row of the crossbar of
(64 cells ·16 CPs) (16 cells · 16 CPs + 128 cells)=640 cells is achieved. This is
a 62.5% reduction in required memory size for the switch fabric, compared to the
CICQ switch with CP size of 64 cells.

8.7 Summary

In summary, the CICQ switch is a merging of the buffered crossbar and VOQ switch.
The CICQ switch exhibits very good performance and due to its simple schedulers
is very likely to be highly scalable. The CICQ switch does exhibit instability for a
schedulable, asymmetric traffic load. For any two ports arbitrarily identified as ports
1 and 2, let 1 = 11+ 12, 21 = 12 and 22 = 0 Within a region of 11 0 5
and high offered traffic load, instability occurs. This instability condition is not lim-
ited to a two-port switch, but can occur between any two ports of a large switch. This
and other instability conditions exist also in iSLIP VOQ switches. Speedup and other
methods can be used to overcome the instability (see, for example, [23]). Clearly,
additional work needs to be done to investigate the stability of the CICQ switch. Ide-
ally, better analytical models for CICQ switch performance are needed. Additional
work is also needed in reducing the constraints caused by feedback delay from the
CP buffers to the input port schedulers. Section 8.6 described one possible direc-
tion. Rojas-Cessa et al. have described another direction based on load-balancing a
switch [47]. It is encouraging to see the continued interest and ongoing work to better
understand and further develop the CICQ switch.
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9.1 Introduction

As the volume of data traffic continues to increase, how to reasonably utilize the
offered bandwidth in an optical wavelength-division-multiplexing (WDM) network
is becoming a major challenge. An efficient switching mechanism may lend itself to
realize this goal. Basically, there are three switching schemes for WDM networks:
circuit switching, packet switching, and burst switching. Optical circuit switching
(OCS) is generally implemented as wavelength routing, which is a popular scheme
in WDM networks today, but its usage of bandwidth may not be efficient for highly
bursty traffic. A longer-term strategy for the network evolution is to employ optical
packet switching (OPS), which provides better resource utilization, higher function-
ality, and finer switching granularity. One of the major challenges of OPS is that there
is no optical equivalent of a random access memory (RAM). Optical burst switch-
ing (OBS) tries to combine the merits of optical circuit switching and optical packet
switching while avoiding their shortcomings [1–7].

Optical burst switching (OBS) allows switching of data channels entirely in the
optical domain by performing resource allocation in the electronic domain, as shown
in Figure 9.1. In an OBS network, a control packet is sent into the network by the
source node prior to the corresponding data burst. The control packet and the corre-
sponding data burst are launched at the source node separately with an offset time.
The control packet (also called a burst control packet (BCP)) contains the neces-
sary information for routing the data burst through the optical core network, and it is
sent in an out-of-band control channel (possibly a separate wavelength or a subcar-
rier). The control packet is processed electronically at each intermediate node (which
also contains the switching fabric which is an optical cross-connect) to make rout-
ing decisions (outgoing interface and wavelength), and the optical cross-connects are
configured to switch the data burst entirely in the optical domain, thereby removing
the electronic bottleneck in the end-to-end routing path.

In order to efficiently utilize the bandwidth, to reduce the latency, and to pro-
vide the data-transmission transparency, some OBS signaling protocols have been
proposed [8–11]. But these protocols are all similar in that the signaling function is
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Figure 9.1. Optical burst switching (OBS) paradigm

separated from the routing function and therefore introduces constraints on the coor-
dination among the routing, protection, and scheduling of bursts in an OBS network.
In optical networks, routing and signaling could be considered together instead of
separated control components [1].

In this chapter, a novel Time–space Label Switching Protocol (TSL-SP) is pro-
posed for Optical Burst Switching Networks. The concepts of “time label” and
“space label” are defined first as two dimensions to the switching problem. In order
to illustrate the operational principles of the two-dimensional label-switched paths
in TSL-SP, a new approach of orthogonal time-space coordinates is introduced, in
which the vertical coordinate is the space label and the horizontal coordinate is the
time label. In the orthogonal time-space coordinates, network resources can be ef-
ficiently assigned by the TSL-SP, and therefore the routing and signaling functions
can be well integrated.

This chapter is organized as follows. In Sections 9.2 and 9.3, the concepts of
time label and space label are defined. In Section 9.4, TS-LSP is illustrated. In Sec-
tion 9.5, the performance of TSL-SP vs. conventional signal protocols is compared.
Finally, the chapter is summarized in Section 9.6.

9.2 Time Label

Basically, the time-label approach is a resource-reservation mechanism for optical
networks, and it is one of signaling protocols of OBS. In conventional signaling
protocols of OBS (see Figure 9.2) [9], the resource reservation is implemented by
the offset time between the control packet and the data burst. At the source node,
the offset time is not smaller than the sum of the expected control delays in each
node along the routing path, i.e.

P
=1 ( ), where ( ) is the expected control

delay (e.g. the processing time incurred by the control packet at node , and is the
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Figure 9.2. Time label

total number of traversed nodes) [9]. In current generation of WDM switches, the
signaling-protocol processing time is a few microseconds, and the cross-connect cut-
through time is a few milliseconds [8]. There could be a certain amount of deviation
between the estimated and actual control-delay time, which is on the order of a few
microseconds. This deviation may result in a data-burst loss or wastage of the link
resource.

For dealing with the above problem, we propose the new concept of time label.
The fundamental principle of time-label switching is that, if the source node of a
burst (as well as all other nodes) has global information on the time-wise occupancy
status of all the links in the network, then the source node could pick an appropriate
time such that the entire data burst can traverse the path through intermediate nodes
to the destination without being dropped at an intermediate node due to contention.
Thus, instead of launching a burst right away into the network as in standard OBS,
the launching of the burst into the network may be delayed until an opportunistic mo-
ment to ensure smooth passage of the burst to the destination. But a contention may
still occur because of slightly out-of-date information on link status, e.g. when two
nodes launch bursts into the network nearly simultaneously while using a common
link, which was expected to be available at the appropriate time by both the nodes.

The time-label mechanism can be implemented as follows. The instant when a
data burst arrives at an intermediate node is called the time label. As shown in Figure
9.2(a), the control packet is sent by the source node at time , and the corresponding
data burst is sent at time . represents the propagation delay that a data burst will
encounter on the th link (or hop), where goes from 1 to on this -hop path. At
the source node, the time label is referred to as . At the first intermediate node, the
time label is 1 = + 1. The reserve-fixed-duration (RFD) at this node is from
1 to 1 + , where is the length of the corresponding data burst. At the second

intermediate node, the time label is 2 = + 1 + 2, and RFD is from 2 to
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2 + . At the th node, the time label is = +
P

=1 , and RFD is from
to + , and so on.

At the source node, 4T must be not smaller than the offset time of conven-
tional OBS signaling protocols, i.e. 4 , where 4 = . Because the
control packet provisions network resources for the corresponding data bursts, the
control packet must be processed before the corresponding data burst arrives at each
node. Because no optical buffer is applied in such an OBS network, the data burst
will be transparently propagated to the destination at light speed without extra delay.
Thus, as long as the time label at the source is determined, the corresponding time
label of each intermediate node will be exactly determined. Therefore, , 1, 2, ...,

are taken as the time labels. Each time label is a local time identifier (ID) at its
own node, and it is also a remote time ID at the other nodes located on the routing
path. An ordinal label stacking consists of the time labels of the routing path, which
is shown in Figure 9.2(b). Along the routing path, the corresponding time label of
each node is turning from a remote time ID into a local time ID, which is on the top
of the time-label stack. A controller in an intermediate node reads the local time ID.

Why should one replace the offset time by time label for signaling in an OBS
network? In optical networks, optical propagation time per kilometer is about 5 s.
In current optical networks, the deviation of optical propagating time in each hop
(or fiber link) is in the order of 10 8s, which is much smaller than the deviation
magnitude caused by the control delay of conventional OBS signaling protocols.
Another important advantage of the time label is that the corresponding data burst
will be triggered at the explicit time label at the source node, which avoids the
prediction mechanism of the start and the end of the data bursts in conventional
signaling protocols of OBS [8, 9]. Thus, the time label will be an exact mechanism
to perform and refine reservation of network resources.

9.3 Space Label

The time label can perform provision of services in the time domain, but how to real-
ize provision in the space domain is equally important. Specifically, given that there
are multiple paths available from the source to the destination in a mesh network,
which path should be chosen for quickest delivery of the data burst to the destina-
tion?

Shown in Figure 9.3 are routing-adjacency relationships between three neighbor-
ing nodes. In the routing protocol, each node and its ports can be distinguished from
one another by some specific identifiers. Those corresponding identifiers are called
space labels. In Figure 9.3, the ( + 1)th node is represented by Router ID: + 1,
and each intermediate node of the routing path has an input port and an output port,
such as ( + 1)th node with an input port ID 2 and an output port ID 3. The
labels 2 and 3 are local for the ( + 1)th node, but they are also the remote
labels for the th node. In Figure 9.3, the arrowheads show the traffic direction. In
the optical network, a fiber link (or hop) can be uniquely identified by two port IDs.
For example, in Figure 9.3, a link 1 is uniquely identified by 1 and 2. Each
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Figure 9.3. Space label

port ID contains three necessary pieces of information: (1) switching information,
(2) maximum (or reservable) bandwidth, and (3) data encoding information.

Also optional information may be attached in the descriptor. For example, the
allowable maximum burst length could be added. An example of a port ID is as
follows: Switching Type = OBS-1, Encoding = Ethernet 802.3, Max Bandwidth [0]
= 1.0 Gbps for priority 0, Max Burst Length =300 ms.

By space labels, a port ID can be used to identify further fine-grain information
within each node. All space labels of a routing path form a label stacking, which is
shown in Figure 9.3. The space-label stacking operates in the same way as time-label
stacking. In each node, the controller reads the space ID along with time ID, and the
resource reservation is implemented in the nodes. Along the routing path, the local
space ID is located at the top of the stack, and it is read and then stripped off. At the
next node, the first remote space ID appears at the top of the stack and becomes a
local space ID.

Space label can implement provisions for services in the space domain, and is
part of the routing information. Note that each wavelength channel could be labeled
based on the switching port identifiers in a WDM network.

9.4 Time–Space Label Switching Protocol (TSL-SP)

The time–space label (TSL) consists of time and space labels, and hence it is two-
dimensional. The time label avoids the impact of control delay for provisioning of
services. But node synchronization is needed in the time-label scheme, as in the JET
procedure [9], and it can be more easily implemented than bit or packet synchro-
nization. The TSL carries the routing and signaling information. Also the topology
and link-status information of the network should be collected for efficient utiliza-
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Figure 9.4. An example of the time–space routing algorithm

tion of network resources. Most importantly, a time–space label is network-wide and
globally unique.

The Time–Space Routing (TSR) algorithm’s objective is to find a shortest-path
tree in which the necessary network resources are not only free in the space dimen-
sion but also available in the time dimension. The algorithm consists of three major
steps:

1. The link-state database of the network is built. Here, the Shortest Path First (SPF)
[12] algorithm is adopted to search for such some routing paths between each
pair of nodes. These routing paths between node pairs constitute a set in which
they are sorted from the shortest path to the longest.

2. Some of the paths are filtered to form a subset if they are available in the time
dimension. In this subset, the shortest path is the most preferred, and selected
as the primary working path, while other paths in the subset could be taken as
candidates for backup paths. Based on the primary working path, the SPF tree
can be formed, and it can serve as a map for data-burst routing.

3. At the source node, a routing table is built based on the corresponding SPF tree,
which consists of space and time labels.

In the algorithm, the selected shortest routing path may not be the shortest routing
path in the space dimension, but it must be available in the time dimension. Here, the
meaning of “shortest” is the shortest path among all paths that are available in the
time dimension. The rule guarantees that the network resources assigned are efficient
and effective in time and space dimensions. TSR is illustrated in Figure 9.4, in which
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the set of routing paths are searched and sorted according to the lengths in hops
(and ties between some equal-hop paths are broken randomly). In Figure 9.4, six
routing paths between the source and destination nodes are considered. But, in the
time dimension, it may be the case that there are only four routing paths (3,4,5,6)
currently available among the set of routing paths. In the subset of four routing paths,
path number 3 is the most preferred because it is the best available shortest path in
both time and space dimensions.

The fundamental goal of TSL-SP is to coordinate the signaling and routing func-
tions organically. In TSL-SP, the routing function uses a label-based routing protocol
to distribute and maintain information about the topology and resources of the net-
work. The routing protocol is the means by which non-local resource information
is distributed. The topology and resources of the network will be taken into account
as parameters for the path algorithm to calculate a label-switched path (LSP). In
TSL-SP, the signaling function is the procedure through which service provisioning
occurs. The service provisioning includes LSP establishment, LSP deletion, and LSP
modification. In TSL-SP, after comparing the time-label information of the routing
table at each intermediate node with the time information in the link-state database,
the routing path is confirmed if there will be no contentions. If such a routing path
is not available, TSL-SP searches for the second preferred path and so on, until such
a routing path is finally confirmed. Then, TSL-SP distributes the time–space label
(TSL) along the confirmed routing path, and the network resources are assigned ac-
cordingly. Thus, a LSP in time and space dimensions can be set up by TSL-SP, which
is called the time–space label switched path (TS-LSP).

In order to demonstrate the principles of the TSL-SP, orthogonal time–space co-
ordinates in which the vertical coordinate is the space label and the horizontal coor-
dinate is the time label are shown in Figure 9.5.

In Figure 9.5, there are some assumptions: a mesh network with 10 nodes, four
ports per node with two inputs and two outputs, and the nodes in the network are
connected to each other by a single fiber link. In the orthogonal time–space coordi-
nates, a crossing point between time label and space label is an intermediate node.
Because the propagating time of a burst through the intermediate node is neglected
in TS-LSP, the input port ID and output port ID in an intermediate node correspond
to the same time ID in Figure 9.5. In the intermediate node, cut-through switching
is accomplished just prior to the arrival of the corresponding data burst. The corre-
sponding data burst is forwarded and transmitted along the TS-LSP. In Figure 9.5,
each TS-LSP can be determined by the corresponding time and space labels.

In particular, TS-LSP dramatically reduces the blocking probabilities of routing
and forwarding. Resource provisioning of conventional signaling protocols is carried
out on a single dimension, i.e. either the time or space dimension. However, resource
provisioning in only one dimension could lead to a conflict of resource provisioning
in the other dimension. The probabilities of routing failure and burst loss are higher
under heavy traffic if only one-dimensional resource provisioning is adopted. In Fig-
ure 9.5, the hop of (5 7) is between nodes 5 and 7, and the hop of (9 6)
is between nodes 9 and 6. The hops of (5 7) in 1 and 2
are in the same wavelength channel and the same fiber link. Although the Port IDs
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Figure 9.5. Time–space label switching protocol

are the same, the Time IDs are different at nodes 5 and 7. For the hops of (9 6)
in 3 and 4, although the Time IDs are the same at nodes
9 and 6, the Port IDs are different at nodes 9 and 6. Thus, the network resources
can be statistically utilized in time and space dimensions in TSL-SP. Compared with
conventional OBS routing paths, TS-LSP can provide a connection mode for connec-
tionless networks. The connection-oriented nature of TS-LSP is more advantageous
when routing paths go through a greater number of hops.

A data burst is carried by a dedicated wavelength in OBS. Thus, a wavelength
could be viewed as an implicit label. TSL-SP directs the corresponding data bursts in
a dedicated wavelength. TSL-SP could be extended into three dimensions also if the
wavelength dimension could also be used as an explicit label in the switching proce-
dure (as shown in Figure 9.6). The three-dimensional label-switching protocol could
be further extended into a multi-dimensional switching protocol, e.g. finer switching
granularities could be additional dimensions.

9.5 Illustrative Results

The features of TSL-SP are described in Figure 9.7. Its characteristics are: one-way
reservation, switching cut-through, variable-length payload, out-of-band control, and
medium/large switching granularity. The one-way reservation obviously reduces
control and procession overhead. The switching cut-through avoids the processing
of optical payload. Bandwidth utilization can be improved because of medium/large
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Figure 9.6. Three-dimensional label switching protocol

granularity of bursts. Out-of-band control channel can avoid optical buffer, which is
still not very mature today. Finally, the variable length of bursts can provide flexibil-
ity.

Although TSL-SP has been proposed for OBS, its modified version can be ap-
plied to wavelength routing and packet switching. In Figure 9.7, the bold ellipse
shows its applicable fields in optical switching, and the features of all current proto-
cols for optical switching are given in this figure as well.

We evaluate the performance of the proposed TSL-SP on a typical optical back-
bone network. The network has a randomly generated topology, with 15 nodes and
32 fiber links (see Figure 9.8). There are 32 wavelength channels per fiber link. Self-
similar traffic is taken as a resource in which the distributions of the burst inter-
arrival time and the burst length follow the Pareto distribution and the exponential
distribution, respectively [7]. TSL-SP is compared with conventional OBS signaling
protocols, i.e. JET and JIT1 as follows. (Note, SPF is adapted into JET and JIT in our
simulations.)

In Figure 9.9, we can see that the switching performance of JIT is better than that
of JET. The reason is that JIT has connection acknowledgement and release mech-
anisms that can guarantee quality of service (QoS) [8], but JET provides best-effort
service [9]. When comparing TSL-SP with JET and JIT, we find that the switching

1 JIT = Just In Time, in which network resources can be reserved for a burst immediately after
the arrival of the corresponding control packet; if network resources cannot be reserved at
that time, then the control packet is rejected and the corresponding burst is dropped, which
is also a typical signal protocol in OBS networks [8,11]
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Figure 9.7. Comparison among the switching protocols: TAG - Tell And Go; JET - Just
Enough Time; JIT - Just In Time; RFD - Reserve-Fixed Duration; MPLS - Multi-Protocol
Label Switching; VC - Virtual Channel

Figure 9.8. A random network topology

performance for TSL-SP is significantly improved. The burst blocking probability
of TSL-SP can be reduced by two orders of magnitude compared with JET or JIT
in heavy traffic. This is beneficial for statistical utilization of network resources by
exploiting the information in the space and the time domains.

Figure 9.10 shows the improvements of link utilization with TSL-SP vs. JIT and
JET. As traffic load is increased, greater improvement of link utilization is achieved.
Because TSL-SP can provide connection-oriented service for connectionless net-
works, the network resources can be effectively assigned. Under heavy traffic, the
improvement of TSL-SP vs. JET is more than that of TSL-SP vs. JIT because block-
ing and retransmission probabilities of JET under heavy traffic are higher due to its
feature of best-effort service.
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Figure 9.9. Comparison of burst blocking probabilities for different switching protocols

Figure 9.10. Bandwidth utilization improvement of TSL-SP vs. conventional OBS signaling
protocols

Figure 9.11. Comparison between JET and TSL-SP
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Further comparison between JET and TSL-SP is shown in Figure 9.11, where
self-similar degree of self-similar traffic (Pareto traffic) is equal to 0.8 ( = 0 8).
The blocking probability of JET under self-similar traffic is higher (up to 1-3 orders
of magnitude) than that of JET under Poisson traffic. This means that JET is not suit-
able for self-similar traffic. For TSL-SP, the blocking probability of Pareto is lower
than that of Poisson under light load, because the heavy tail of self-similar traffic
has little effect on network performance under light load. As the volume of traffic
increases, the bursty nature is more serious under self-similar traffic, which leads
to deterioration of network performance. Thus, the blocking probability of Pareto is
higher than that of Poisson under heavy load. But there is no big difference (within
one order of magnitude) between Pareto and Poisson for TSL-SP. Thus, TSL-SP
helps to mitigate the deterioration of network performance caused by self-similar
traffic. Furthermore, with either self-similar traffic or Poisson, the blocking proba-
bility of TSL-SP is lower than that of JET.

Figure 9.12. Results of TSL-SP under different self-similar degrees of traffic

Figure 9.12 shows the results of TSL-SP under different self-similar degrees of
traffic. As the self-similar degree decreases, the blocking probability of TSL-SP goes
down, and gradually gets close to that of Poisson traffic. The blocking probabilities
for self-similar degrees = 0 55 and = 0 5 are very close. This is because
the traffic becomes close to Poisson when H is equal to 0 5. In Figure 9.11, there
is a considerable difference between = 0 9 and = 0 8 under moderate and
light traffic. But the difference between them reduces when the traffic load is more
than 0.8. The main reason behind the phenomenon is that the bottleneck in network
resources is the primary factor rather than the self-similar nature that causes the
connection to block under heavy traffic load (more than 0.8) and high self-similar
degree (more than 0.8).

These illustrative results demonstrate that TSL-SP is an efficient and effective
method under self-similar traffic, which is quite different from today’s signaling and
routing protocols that still suffer from the effects of self-similar traffic.
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9.6 Summary

In this chapter, we first defined the time label and space label for transparent optical
burst switching networks without extra delay. The fundamental goal of TSL-SP is to
bind the signaling with routing functions close together. TSL-SP is a new technology,
in which the effectiveness of routing can be achieved by employing the label mecha-
nism. Simulation results show that, when TSL-SP is applied to typical networks, the
switching performance can be improved by two orders of magnitude compared with
conventional OBS signaling protocols in heavy traffic. Furthermore, a new approach
of orthogonal time–space coordinates is proposed to analyze the assignment of net-
works resources. Based on its two-dimensional feature, the network resources can be
utilized more efficiently. In particular, it is effectively immunized from the effect of
self-similar traffic.

As the traffic nature changes from being voice-dominant to data-dominant, the
self-similar nature of network traffic becomes bursty at all time scales. Thus, under
reasonable switching protocols and mechanisms, burst switching could be suitable
for today’s bursty traffic where the duration of each burst is neither long enough to
be suited to circuit switching nor short enough to fit into a single packet. Self-similar
cluster switching is a related topic discussed elsewhere [14].

Therefore, TSL-SP is one of the most promising protocols for Optical Burst
Switching Networks. For more information on this topic, the interested reader is
referred to [13–15].
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10.1 Introduction

Key-based access to information is essential for many information processing sys-
tems including real-time, embedded systems. The identifying fields of application
data can be taken as keys for the purpose of efficiently storing, retrieving and up-
dating the associated information. For example, the social security number is widely
used to index a person in many systems dealing with civil affairs. To reduce the
length of keys, algorithms that are able to shuffle and combine the bits of keys are
frequently utilized. These algorithms can turn a variable-sized amount of text into
a fixed-sized output and are denoted as hash algorithms or hash functions. The re-
ordering and reorganizing process of bits is then called as hashing procedure. By
applying hash algorithms, a key and its associated data are turned into (key, value)
pair and stored into a hash table, which is among the most common data structures
used for fast information retrieval. In many embedded systems, key manipulation
and access to data must occur within a hard real-time limit.

Network Processors (NPs) are special-purpose programmable embedded systems
with optimized architectural features that aim to perform real-time packet-processing
functions in a fast manner [1]. In general, NPs are hybrid hardware–software designs
which take advantage of both the quick processing speed of hardware and the flexi-
ble programmability of software. They are expected to become the core of the fourth
generation of network devices such as routers, voice over IP (VoIP) bridges and vir-
tual private network (VPN) gateways. For example, the APP550 network processor
from Agere Systems is designed to process 5 Gigabits per second [2].

The basic data flow inside a network processor is shown in Figure 10.1. The solid
lines indicate direction of flow for time constrained actions. Application require-
ments dictate that the network processor must respond to incoming traffic within
well-defined temporal bounds. Temporal constraints arise because input events may
be lost or over-written if not captured with predictable speed needed to meet the
throughput requirements. The time-constrained actions are also denoted as data
plane tasks, which require a large amount of processing power. The dashed lines
indicate direction of flow for processing that is not bound by temporal constraints.
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Figure 10.1. The basic data flow inside a network processor

This processing may include sampling and monitoring, statistical accounting, and
processing of exception conditions. It differs from real-time processing in that it
may include arbitrary iteration, using an arbitrary amount of memory in order to ac-
complish tasks. Real-time processing with its predictable latency constraints cannot
afford unbounded iteration, and unbounded iteration comes with unbounded memory
access. Real-time actions may deposit or consume data in memory, but this mem-
ory typically consists of constant-time access structures such as registers, queues, or
stacks, usually implemented in hardware. The non-real-time actions are also denoted
as control plane tasks, which require complex implementations.

To meet the requirements of properly handling a large amount of incoming traffic
with high packet rates, key-based hashing algorithms are often used in the implemen-
tations of functions in NPs. For instance, packet classification is one of the essential
tasks of network processors. It needs to cross-check multiple fields in packet head-
ers and is required by almost all the modules along the ingress and egress paths in
a network processor. For example, deciding if a packet is destined for a web server
requires checking the ETHERNET TYPE field in its MAC layer header, the IP TYPE
field in the network layer header, and the TCP DESTINATION PORT field in the
transport layer header. The job of packet classification has to be done at line speed
to decrease processing delay. Hash tables are useful to help the processor quickly re-
trieve the desired header information, by taking the combinations of the identifying
fields as the key.

Another example is the Network Address Translation (NAT) [3, 4] function in
NPs. A NAT device is usually used to connect a private IP network to the public
Internet as depicted in Figure 10.2. NAT is a mechanism for translating the addresses
for computers inside a private IP network into addresses that are valid in the public
Internet, and vice versa. NAT service is performed for each session of communi-
cations across the border of private networks. Using the scenario in Figure 10.2 as
an example, the source address of a HTTP request to CNN from 192.168.1.5 will be
translated into 128.180.243.96. This address manipulation must be done at line speed
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CNN Web Server

64.236.24.4

Internet

NAT device

192.168.1.1

128.180.243.96
192.168.1.3

192.168.1.5

Private IP Network

packet address translation

Figure 10.2. A simple example of NAT service

by taking the IP addresses as hashed keys. How to quickly and correctly map an IP
address among the 4 Giga (232) address space of IPv4 is a challenge for network
processor designs.

Besides NPs, hash algorithms have been proven to be effective and efficient ap-
proaches to design other network systems. In peer-to-peer (P2P) networks, resource
distribution between peers in Chord [5], Pastry [6], and Tapestry [7] is performed
based on a specially designed distributed hash table (DHT). Secure Hashing Algo-
rithms (SHAs) are quite accepted for implementing network security [8] for both
wired and wireless networks. Moreover, to identify a connection in the Public In-
ternet a combination of 16-bit port number with 32-bit IPv4 address from both the
source and the destination is widely taken as the hashed key.

In this chapter, we introduce the idea of hybrid open hash table designed to meet
the processing time constraints of network processors. It is a composite algorithm
that combines an open addressing hash table with the temporal responsiveness of
incremental garbage collection. Basically, it is performed by dynamically switching
between a fresh table with incremental construction via selectively copying used
entries, and an aged table with incremental cleaning by emptying deleted entries.
Simulation results illustrated later show that the hybrid open hash algorithm performs
better than Brutil [9], a proposed chained hash table designed for real-time embedded
systems.

10.2 Conventional Hash Algorithms

The study of hash tables has been a research topic for more than thirty years. Nowa-
days, it is one of the most common data structures implemented in many system-level
libraries such as Java, STL, etc. In general, a hash table is typically constructed by
mapping object keys to a relatively smaller space of buckets, which index the table.
A (key,value) pair is called as an entry in a hash table. A bucket may contain one
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Figure 10.3. Simple structure of a hash table

or more entries based on different designs of hash table. A simple structure of hash
table is illustrated in Figure 10.3.

The purpose of hashing is to generate a hashed key so as to locate the index to
store the associated data. A hash function maps every object to a small integer
h(x ), then stores in bucket h(x). However, hash collision may happen when two
keys are indexed to the same bucket by a hash function. The reason is that the size
of the bucket is ususally much less than the number of possible objects. Based on
the structure of buckets and the strategies of handling the issue of collisions, con-
ventional hash tables can be categorized as chained or open addressing mechanisms
[10]. Both methods are able to effectivly store (key, value) pairs into hash tables.
However, both suffer from great performance degradation over time that limits their
usefulness in real-time systems that have hard timing constraints.

10.2.1 Chained Hash Tables

Chained hash algorithms map a key to a bucket, which contains a linked list of en-
tries, i.e. each bucket may contain several objects hashed to the same index. Each
entry in the linked list is constructed with the object key, the associated data, and a
pointer to the next entry in the same chain. When hash collision occurs, a new entry
that has a fresh (key,value) pair is added at the end the link list and the pointer of the
last entry is updated. Figure 10.4 depicts the basic structure of a chained hash table.

Searching for an object takes two steps: a single hashing step to a bucket followed
by a linear-time serial search through the linked list. Searching terminates when the
object is found or the linked list search is exhausted. Ideally, with a good hashing
function to distribute the keys uniformly into the table, each bucket’s list stays short,
and the search for a specific data item is quick. In the worst case, every object would
be hashed to the same bucket and a long link list would be generated in just one
bucket in the table. In this case, the search may have been through all the entries.
This gives an unacceptable delay in real-time embedded systems in which there may
be a huge number of objects.
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Chained Hash Table

entry entry entry entry

entry entry entry entry

entry entry entry entry

. . .
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data
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entry

Figure 10.4. The basic structure of a chained hash table

Open Hash Table

entry   ( key, value )

entry   ( key, value )

entry   ( key, value )

. . .

Figure 10.5. The basic structure of an open hash table

10.2.2 Open Hash Tables

Unlike chained hash tables, an open hash table maintains at most one entry in each
bucket. Figure 10.5 presents the basic structure of open hash tables. When hash col-
lision occurs (i.e. there is already a (key, value) pair in the current index), the new
key that is hashed to the same bucket calls a rehash function to find a new bucket.
Rehashing is continued until an empty entry is found. Rather than building up an-
other data structure inside a bucket, the open addressing mechanism utilizes a list of
hash functions {h1 h2 h } so that it is guaranteed that h (x ) indexes object to
different locations. The rehash function could be:

• linear probing: h +1(x) = h (x) + 1;
• quadratic probing: h (x) = h1(x) + ( 1)2;
• double hashing: h (x) = f1(A(x ) i) + f2(B(x ) i), where A(x ) and B(x ) are

two different hash functions, and f1(·) and f2(·) are two polynomial functions,
e.g. h (x) = A(x ) + ·B(x ).
The linear probing method is often used due to its simplicity, but it is very ineffi-

cient because linear probing rehashes to a sequence of the same locations, colliding
multiple times.

Searching for an object needs a single hash step to find the start bucket followed
by serial rehashing steps if the desired object is not found at the index. Without
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an explict link list, an open hash table inserts each object into an implicit serial
list defined by the hash and rehash indices of the keys. The worst case is that all
the buckets indexed by rehashing functions are occupied. The object may then be
discarded.

10.3 Performance Degradation Problem

The Issues

Comparing to open hash tables, a chained hash mechanism suffers the problem of
large processing delays for real-time embedded systems due to the following reasons:

• Concurrency issue. Multithreading poses the biggest problem for chained hash
tables. When multiple threads have concurrent access to a table, any of them
modifying an entry must lock its bucket so that it cannot be read or written at the
same time by other threads, particularly when two or more interdependent fields
must be modified atomically in order to maintain consistency. This restriction is
the well-known critical section problem [9]. Locking buckets will incur delays
for other threads that try to access the same data. And multithreading happens
quite often in network processing in order to speed up the overall performance.
Open hash tables share the same need to restrict concurrency within a bucket, but
the problem is worse for chained hashing because every insertion and deletion
requires locking a free list of chained element objects in addition to the hash
bucket’s linked list) of interest, resulting in more stalls not encountered with
open addressing mechanism.

• Memory accessing delay. For a chained hash table, the nature of the linked list
data structure inside a bucket will put a colliding key into the end of the chain
when collision happens. Thus, the increment of the length of the list also in-
creases the average data accessing time because a search operation for that new
key has to go through all the entries before it meets the desired one. The same
scenario happens with open hashing only in the worst cases when the table is
heavily loaded. Even in the zero-collision case, at least two memory access op-
erations must occur to inspect a key residing in the table. The first access reads
a hash bucket’s pointer to the linked list element, and the second one reads fields
from the appropriate entry. However, open hashing requires only one memory
access to read a non-colliding key from a one-element bucket.

The advantages of conventional open hash tables over chained hash tables do not
imply it is good enough for embedded systems that require strict predictable bounds
on every system call. In fact, the conventional open addressing mechanism has a
significant flaw about that it doesn’t deal with deleted entries efficiently. This issue
is as pernicious as the chained hash table’s excessive memory access overhead.

Deleting an object from an open-addressed hash table is harder than in a chained
hash table. Simply clearing out bucket h(x ) to delete object x could be incorrect be-
cause this bucket may be on the search path to another object which has been hashed
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Bucket Key State

00 deleted

01 deleted

02 deleted

03 deleted

04 0099 used

05 empty

Bucket Key State

00 0005 used

01 0110 used

02 0210 used

03 0119 used

04 0099 used

05 empty

(a) (b)

Figure 10.6. (a) Insert five different keys into the open hash table by hash/rehash functions.
0099 is eventually located at bucket 04 after several rehashing operations. (b) Searching for
0099 after several deletions may take a long time in this specific case.

to the same index. In the worst case, all the rehash buckets have to be examined to
inspect all the possible locations of . An exhaustive search of an open hash table
is slower than the serial searching in the link list of chained addressing approach,
which only needs to do hashing once.

A simple example can illustrate this performance problem very well. Suppose we
are trying to map four-digit keys in the range 0000–9999 to the indices from 00 to
05 for a 6-entry hash table. In the real world, the size of hash tables used by network
processors is 1000 times larger than this example. The hash function in use is to
simply multiply the key’s left two digits by its right two digits to form a four-digit
product, from which the middle two digits are taken as the hash index. For example,
the key 4567 yields a product 45 × 67 = 3015, with the middle digits giving a hash
bucket of 01 for this hash function. Typical network processing uses a much more
complicated hashing algorithm, employing bit shift and XOR operations to compress
bits into a bucket. We also assume that the simplest linear probing that looks in
the subsequently available bucket is taken as our rehashing function when collision
occurs. Initially, the table is empty. Suppose 5 keys in the sequence 0110, 0210, 0119,
0005, and 0099 are inserted into the table with the results of hash (or rehash) indices
of 1, 2, 3, 0 and 4 are used. After that, the first four keys are deleted and only key
0099 is left. The performance problem becomes obvious if we search for 0099 in the
table. Conventional open hashing mechanisms will first locate at bucket 0 by hashing
0099 and find a deleted entry. Then the rehashing function of linear probing will lead
the search operation to visit all the buckets from 1 to 3 till it eventually finds 0099 is
in bucket 4. Figure 10.6 illustrates this case. This example shows that even when an
open hash table is sparsely occupied many deletions searching may still have to go
through the overall table exhaustively to locate an item, resulting in large delays that
are not acceptable by network processors.
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10.3.1 Improvements

Brutil [9] is an approach to improve the data accessing performance of chained hash
tables designed for real-time embedded systems. It concentrates on solving the large
delays that arise when a hash table becomes heavily loaded, resulting in many colli-
sions and long linked lists in buckets. In this case, the size of the hash table needs to
be extended. To do this, the conventional chained addressing mechanism will simply
create a new table with more buckets (say, double the size of the original one) with
another hash function whenever table extension is needed. Then it copies the over-
all contents from the original table and rehashes them into the new one. Obviously,
these operations cause very large processing delays. Brutil’s idea is to maintain two
hash functions associated with two hash tables: a smaller table that is currently occu-
pied and a pre-allocated bigger table for the future. When the smaller table becomes
heavily loaded, Brutil incrementally insert entries from it into the bigger one, rather
than copying the whole table at the same time. The incoming new objects will also
start to be inserted into the bigger table. After all the contents of the smaller table
are copied, it will be replaced by the bigger table. Brutil then pre-allocates another
table with many more buckets for the next table extension. In this way, Brutil avoids
the large delay between deletion of the old table and creation of the new table. How-
ever, Brutil doesn’t solve all the performance degradation problems of chained hash
tables, e.g. the concurrency issue. Our comparison results will illustrate that the use
of hybrid open hashing with garbage collection outperforms Brutil in terms of total
processing time.

To solve the inefficiency of deletion in the open addressing mechanism, Knuth
[11] proposes an algorithm for in-place reorganization of open hashs table to remove
the deleted entries that requires linear probing for collision resolution. Szymanski
[12] improves Knuth’s idea by removing the requirement for linear probing, but both
approaches are monolithic in their table reconstruction. That means allowing table
reorganization of duplicating entries within the space of one existing table. They
avoid the memory cost of maintaining two tables during reconstruction, but both do
not avoid the worst-case table access time encountered during reconstruction, and
suffer from the same defect with respect to real-time applications. Other efforts such
as Deitzfelbinger’s dynamic perfect hashing [13] and Fredman’s hash functions for
priority queue [14] also discuss how to improve the performance of hashing algo-
rithms, but neither of them targets real-time embedded systems.

The hybrid open hashing algorithm presented next avoids the monolithic recon-
struction of tables by continually building a new hash table as it copies used entries
from an aging table into the new one, skipping over deleted and empty entries. This
incremental approach to reorganization is inspired by incremental copy garbage col-
lection [15]. Garbage collection is a technique for automatically recovering storage
from a running program’s heap for application data structures that are no longer refer-
enced by the running program. Classic garbage collection algorithms are monolithic
— they stop all application processing during reorganization of memory, thereby
impeding real-time responsiveness, similar to monolithic hash table reorganization.
Real-time systems rely on incremental garbage collection, which interleaves its work
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with application processing in small, constant time-bound steps. Incremental copy
collection achieves reorganization by copying application data into a new heap that
is initially free of garbage. It is this property of incremental reorganization in the
interest of avoiding monolithic stalls that the hybrid algorithm adapts to open hash-
ing.

10.4 Hybrid Open Hash Tables

10.4.1 Basic Operations

In order to describe the hybrid hashing algorithm, it is necessary to describe three ba-
sic hashing operations: Get (key-based retrieval), Put (key-based insertion) and Re-
move (key-based deletion). In standard open hashing, Get works by searching from a
key’s hash index, through 0 or more rehash steps, until it finds the key; an empty en-
try terminates Get with failure, i.e. the key is not in the table. Put invokes Get to find
the key; if the key is not presented, Put searches the initial hash index, rehashes used
table entries, and places the key and its associated data in the first empty or deleted
location found. Note that in a single-threaded architecture, Put could cache the first
deleted entry location encountered by its Get call, using that location for insertion
if the key is not found; this caching is not possible in a multithreaded architecture
because the deleted entry may have been used for insertion of a different key by a
different thread. Finally, Remove searches the hash index as Get does; if it finds the
key, Remove marks that entry as deleted.

10.4.2 Basic Ideas

Two hash tables are maintained, with the current table being the table receiving
new insertions from Put, and the alternate table being the aging table, from which
garbage collection filters out deleted entries. Table reorganization proceeds in two
phases. During the copy phase, both tables may contain valid keys.

In the copy phase, Get searches the current table for a key and, if it does not find
the key, Get searches the alternate table; likewise Put searches both tables before in-
serting new entries in the current table; and Remove deletes its key from both tables.
The garbage collector is invoked at the end of Get, Put and Remove to perform one
table reorganization step; the garbage collector advances an index variable cleanix
through the alternate table, one entry per invocation of the garbage collector. In the
copy phase, when the garbage collector finds a used entry (i.e. a valid key) in the al-
ternate table, it puts that key into the current table as a hashed insertion. Eventually,
cleanix advances to the end of the alternate table, and the garbage collector moves
into the clean phase, resetting cleanix to the start of the alternate table. At this point
the garbage collector has copied all keys from the alternate table to the current table,
and all new Put insertions are going into the current table.

During the clean phase, each call to the garbage collector sets all entries in one
bucket within the alternate table to be empty. The alternate table is not consulted by
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Get, Put or Remove during the clean phase. At the conclusion of the clean phase,
when cleanix advances to the end of the alternate table, the garbage collector returns
into the copy phase, resetting cleanix to the start of the alternate table. When return-
ing to copy phase, the garbage collector reverses the roles of the current and alternate
tables, so that the previous alternate table (which is now completely empty) becomes
the current table (for new insertions), and the previous current table now becomes
the alternate table to be filtered for deleted entries by having its used entries copied.

Table 10.1 summarizes the actions of Get, Put and Remove during the two phases
of the algorithm. Incremental table reorganization could also be invoked from other
functions in a system, e.g. by a background thread that runs during lulls in real-time
activity.

Table 10.1. Operations in the hybrid open hashing algorithm

Phase Get Put Remove
copy phase Retrieve from either ta-

ble.
Retrieve from either ta-
ble, insert into current
table if not found.

Delete from both tables.

Garbage collector walks through alternate table, a step at a time, copying
used entries into the current table via hashing. When it reaches alternate’s
end, it changes to the clean phase.

clean phase Retrieve from current
table.

Retrieve from current
table, insert into current
table if not found.

Delete from current ta-
ble.

Garbage collector walks through alternate table, a step at a time, con-
verting all entries to empty. When it reaches alternate’s end, it changes
to the copy phase, and reverses the roles of the tables (a “flip”). The new
current table is empty; copying begins from the populated alternate table.

10.4.3 Performance Evaluation

Performances Comparison of Open Hash Tables

Given the complexity that garbage collection adds to open hashing, there is a chance
that the performance costs outweigh the benefits. Rather than going through com-
plete implementations of assorted algorithm variations for performance evaluation,
we compare the performances of conventional open hash tables, improved open hash
tables and hybrid open tables by running representative application data through a se-
ries of related Java classes that implement an abstract Java interface hashtablei. This
interface specifies table operations Get, Put and Remove, along with some adjunct
operations and a set of measurement operations. Performance is characterized in
terms of several concrete Java classes that implement hash table management strate-
gies. Class hashtableplain implements standard open hashing without any table re-
organization, and class hashtablemono adds reorganization by building a new hash
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table in one monolithic step when the number of deleted entries in the current ta-
ble exceeds a threshold specified on the command line. Hashtablehybrid uses hybrid
open hashing – the incremental garbage collection algorithm discussed above.

Table 10.2 shows results from a series of tests, hashing realistic Internet addresses
and port numbers to hash table entries, using hashtableplain, hashtablemono, and
hashtablehybrid. Hashtablemono builds a new table when a threshold of 5632 deleted
entries is reached for this sample data set; the effectiveness of this threshold for the
data was determined empirically. In these tests, the table can hold up to 16384 entries,
with 8 entries per bucket, giving 2048 buckets. A probe count in these measurements
corresponds to the number of buckets that hashing must inspect or modify to achieve
one sample Put or Get or Remove operation for network traffic. Sample data was
constructed so that after 8000 operations, the number of Remove operations balances
the number of Put operations, eliminating the possibility of filling the table with used
entries. It is trivial to see that if the Put rate consistently exceeds the Remove rate,
any table must eventually run out of room.

Table 10.2. 2,000,000 operations, limit of 8000 used entries before Remove balances Put

Algorithm Max probs Min Probs Average probs Std. deviation
plain 2048 1 89.1208805 284.3068
mono 18162 1 1.746935 60.18176
hybrid 15 2 3.4318165 1.187051

The plain approach with no table reorganization degrades when the number of
deleted entries exceeds empty entries after many deletions, because inspection of
deleted entries comes to dominate the search time. The monolithic approach reduces
the average expense of a hash table operation by periodically building a new table
without deleted entries, but the worst case time of a table operation, represented
here by “max probes,” skyrockets because reorganization-triggering table operations
must await table reorganization. Each table accessing step in table reorganization
is a “probe.” The hybrid approach of incremental table reorganization shows a 2×
average probe count increase over monolithic because each hash operation incurs ad-
ditional table-reorganization probes, but the worst case operation probe count drops
to 15 by avoiding monolithic reorganization.

Performance Comparison of Hybrid Open Hash Table to Brutil

We conducted a comparison between the hybrid open hash algorithm and Brutil using
a traffic file with 4,000,000 Internet connections. To get a fair result, both algorithms
were run without multithreading and had the same initial size of hash tables. Also, a
combination of IP address and port number from the traffic file was used to generate a
48-bits hashed key. The same hashing operations were performed by both approaches
and the running time of Java’s garbage collection was deducted for all tests during the
process of simulations. We first compared the maximum execution time for running
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Figure 10.7. The maximum running time per hashing operation

one hash operation in these two hash tables since bounded performance is much more
important for real-time embedded systems. Figure 10.7 presents the results of testing
100,000–500,000 hashing operations.

The results show that the hybrid open hashing algorithm has a bounded execu-
tion time no matter how large the number of hashing operations, while the bound
on Brutil increases as the number of hashing operations increases. This means, in
some worst cases Brutil may introduce very large processing delays. Figure 10.8 il-
lustrates results for total processing time. It shows that even without multithreading,
the overall performance of hybrid open hash tables is better than Brutil.

10.5 Hybrid Open Hash Table Enhancement

10.5.1 Flaws of Hybrid Open Hash Table

Given the complicated copy-clean-switch process of adding incremental garbage col-
lection into open hash tables, performance costs still possibly outweigh benefits.
There are two major costs in our algorithm: memory costs of pre-allocating two
large hash tables, and execution time penalties by calling garbage collection too of-
ten. The former cost is not a big issue with real network processors since putting
enough memory into the system can solve this issue easily. Moreover, in the initial
period, the amount of consumed memory could be determined by the sum of the size
of the current and alternate tables. The performance cost of the second issue could
be improved by controlling the frequency of garbage collection operations.
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Figure 10.8. The total processing time of 10,000 to 50,000 hash operations

10.5.2 Dynamic Enhancement

In dynamic enhancement, an invocation of Get, Put or Remove invokes the garbage
collector only when the application workload of that Get, Put or Remove has not
exceeded some threshold set by the programmer. Rather than using a fixed fraction
to determine how often to invoke the garbage collector, as in the basic algorithm,
dynamic enhancement uses a fixed threshold. It is dynamic because it determines,
on the basis of the hash table cost of each individual call to Get, Put or Remove,
whether to tax that call with the additional call to the garbage collector. The main
effect is to reduce the maximum number of table probes and the deviation from
average required by Get, Put or Remove, because Get, Put or Remove invocations
with relatively high table probe counts after doing their application work are not
taxed with garbage collector calls; only Get, Put or Remove invocations with low
application probe counts are taxed with table reorganization.

One limitation of dynamic enhancement is that the programmer must set the
threshold, but the threshold depends on the keys and the sequence of Get, Put and
Remove operations being processed. Experiments show that operations with a good
percentage of Get operations work most efficiently with a threshold of one — the
minimal number of probes required by a Get call that finds its key on the initial hash
is one. Only those Get calls with ideal hashing need to invoke the garbage collector.
Unfortunately, a long stream of operations consisting solely of Put operations with
distinct keys cannot use a threshold of one, because during the copy phase, a Put
operation with a new key requires a minimum of three table probes, even with no
rehashing. Put must search the current table once and the alternate table once before
inserting its key in the current table. The most efficient threshold for such sample
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sequences turns out to be three — the minimum number of probes by each Put oper-
ation. And thus any threshold less than three results in no invocations of the garbage
collector, and performance plummets. But three probes add unnecessary overheads
to operations containing a typical number of Get calls, where a threshold of one is
the best fit.

10.5.3 Adaptative Enhancement

In adaptive enhancement to dynamic enhancement, the garbage collector records the
minimum number of hash table probes (not counting table reorganization probes)
for the minimal-cost Get, Put and Remove operation within a window of some fixed
number of Get, Put and Remove operations. At the conclusion of the window, the
garbage collector sets its threshold to that minimum, discarding its previous thresh-
old. It then sets about determining a new minimum for a new sequence of Get, Put
and Remove operations of the window size, repeating the process. Using a window
size determined experimentally, this approach converges rapidly on an efficient table
reorganization threshold for its current sample mix (e.g. packet traffic), yet it adapts
readily to changes in the sample mix (e.g. traffic patterns).

10.5.4 Timeout Enhancement

A final enhancement is timeout enhancement, which applies to hash tables where
each entry used is valid for only a finite time period after the most recent Put or Get
operation on that entry’s key, such as NAPT. Such tables do not provide the Remove
operation; the logical equivalent of Remove occurs when an entry occupies a table
location after its timeout period has expired. Each Put or Get operation that locates
its keyed entry must update a timestamp field in that entry with the new expiration
time for that key. Searches that detect entries with expired timestamps treat those
entries as having deleted status; garbage collection does not copy these deleted en-
tries. The advantage of this approach over alternatives such as content addressable
memory (CAM) is that it is not necessary to use interrupt timers or other active
means to search the hash table to remove expired entries. By treating expired hash
table entries as deleted entries during normal search, timeout enhancement avoids
explicit searches for expired entries. CAM, on the other hand, appears to require ex-
plicit timeout instruction processing for expired entries, because there is no “normal
search” that can convert expired used entries to deleted entries.

10.5.5 Performance Evaluation

Table 10.3 shows measurements for some of these enhancements of the basic hybrid
open hash algorithm under the same scenario as that of Table 10.2. The hybrid 1

2 ,
shows slight improvements if the garbage collector (GC) is invoked for only one half
of the Get, Put or Remove operations instead of every operation. Timeout replaces
Remove with expiration-based timeouts and invokes GC on every Put and Get call;
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Table 10.3. 2,000,000 operations, limit of 8000 used entries before Remove balances Put

Algorithm Max probs Min probs Average probs Std. deviation
hybrid 1

2
14 1 2.6059785 1.394060

timeout 8 2 3.2463965 1.032094
timeout 1

2
8 1 2.475426 1.130879

dynamic 3-4 6 2 3.245097 1.030479
dynamic 1-2 6 2 2.496241 0.5020706

adaptive 6 2 2.496241 0.5020706

timeout treats Remove calls in the sample data set as Get calls. Timeout 12 invokes
the GC on half the calls. Reductions occur because two-table deletion searches have
been eliminated. Dynamic 3-4 uses timeouts and it invokes GC with a threshold of 3
during the copy phase and 4 during the clean phase – the clean phase of GC is less
expensive, allowing a higher threshold – while dynamic 1-2 uses thresholds of 1 and
2 respectively. Only Put and Get operations whose probes are less than or equal to the
threshold invoke GC. Adaptive uses adaptive enhancement with a window size of 64
operations to set the thresholds to the minimum probe counts during those windows.
For normal traffic it is identical to dynamic 1-2.

10.6 Extended Discussions of Concurrency Issues

There are some concurrency issues to consider in the two-table approach of the hy-
brid table reorganization algorithm and its enhancements. Bucket locking of multi-
threading does not solve all problems.

10.6.1 Insertion

The first issue has to do with concurrent attempts to insert an identical key within
the current table. Suppose Thread and Thread both attempt to insert new key

into the current table. For argument’s sake suppose that garbage collection is in
the clean phase, so that the alternate table is not consulted before insertion. Both
threads attempt to find using Get but fail because it is not in the table. Both must
restart searching the initial hash index. As previously mentioned, they cannot save
the location of the first deleted entry because it may subsequently have been used by
another insertion.

Suppose Thread re-enters the current table first and finds entry E to be occu-
pied. Thread continues searching for a deleted or empty entry. Suppose further that,
before Thread arrives at E , the timestamp in E expires, so that Thread consid-
ers E to be deleted. Thread now inserts at E while Thread inserts at a
subsequent entry in the search path. Key now erroneously appears redundantly in
the table.

The solution is to test for entries that are about to expire within a very small time
within the Put portion of insertion, after the attempt at Get has failed, and increase
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their life by a small amount. The increment must be significantly smaller than the
normal decay periods for UDP or TCP mappings. This PayloadPlus implementation
adds 1 second to the expiration deadline of any occupied entry along a Put search
path that is about to expire in less than 1 second. This 1 second “refresh” is more
than enough to avoid the problem, but it is small enough in comparison to normal
decay rates so that, as long as hashing and rehashing scatter searching enough to
avoid consistently refreshing the same entries, it does not increase overall longevity
of expired mappings significantly. In PayloadPlus this test occurs entirely within an
ASL Put function running within the policing engine.

10.6.2 Clean-to-copy Phase Change

Another concurrency issue arises when the phase of garbage collection changes.
When changing from clean to copy phase, the current table and the alternate table
change places. Suppose Thread begins to store key into table 0 (as the current
table), then a clean-to-copy “flip” occurs, making 1 (the current table), and then
Thread begins to store into 1. The result is redundant insertion of into both
tables.

The solution is a so-called write barrier [15]. A barrier is constructed so that
active threads for Put operations stall a table flip until their Put operations are com-
pleted; and a pending table flip stalls any new attempts to conduct Put operations until
it performs the flip. Table mutation becomes a pipeline of grouped Put operations and
single flip operations. In the example, suppose a flip arrives between Thread ’s and
Thread ’s attempts to insert . Thread completes its insertion, then the flip occurs,
then Thread begins the initial Get portion of insertion. Since Thread has com-
pleted insertion, Thread will find . If Thread and Thread had both attempted
to perform Put without separation by a flip, they would have attempted insertion in
parallel, and the first thread that had arrived at a deleted or empty entry in the current
table would have inserted the key; and the other would then have found it.

The write barrier is also necessary to avoid the flip while there are still threads
performing clean phase garbage collection. If a flip occurs while there is still cleaning
of a table, an insertion into that table could be undone by an immediate cleaning of
its bucket. Cleaning threads are treated like Putting threads with respect to the write
barrier. There could also be a critical section problem with the change from the copy
to the clean phase. Even though this change does not flip the current and alternate
tables, it could hide the alternate table from Get searches before earlier garbage col-
lecting threads have completed copying it; the alternate table is not searched by Get
during clean phase, but if not all entries have been copied before the phase change
occurs, some entries would “disappear” momentarily until their copying completes.

The write barrier for the clean-to-copy flip entails multithreaded synchronization
over two counters for threads, which are performing Put and awaiting Put, and a flag
bit for the pending flip. This synchronization can only stall threads at the time of
a flip. Fortunately this condition arises very infrequently in the garbage collection
cycle. Waiting for a flip is not a major source of delay for Putting threads.
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10.6.3 Timestamps

A final, easily handled critical section issue is the matter of copying timestamps
during the copy phase of garbage collection. An entry copied from the alternate
to the current table must have its timestamp copied, but not refreshed, to retain its
application-driven decay deadline. But, it is difficult to copy a 48-bit key and a 16-bit
timestamp simultaneously in one function invocation due to the hardware limitation
of network processors. It requires two, violating atomicity. Between these two calls
another application thread could refresh the key by using it, in which case the old
timestamp should not be copied because it is now outdated. The solution is to have
a policing function that copies in the key set a minimal timestamp — again a decay
time of 1 second — and have the second function that copies in the timestamp test
whether its copied timestamp would decrease the life of the mapping. Normally it
will not, but if an intervening thread has refreshed the timestamp, then the timestamp-
copying policing function avoids storing its timestamp argument in the policing flow.

10.7 Conclusion

For real-time embedded systems such as network processors, conventional hash ta-
bles have the problems of performance degradation due to concurrency issues with
multithreading, large memory accessing delays and not dealing with deleted entries
efficiently. In this paper, we propose an approach combining hybrid open hash tables
with incremental garbage collection to meet the needs of real-time applications. By
maintaining two hash tables instead of one table as in conventional approaches, the
hybrid open hashing approach incrementally copies the valid keys from the alternate
table into the current table, skipping over the deleted or empty entries. In this way,
hashing operations always deal with a table without too many hash collisions. Per-
formance evaluations show that the hybrid open hash table is better than Brutil and
it still has the potential to be improved further by several enhancement approaches.
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